Learning to reach to own body from spontaneous self-touch using a generative model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362238" target="_blank" >RIV/68407700:21230/22:00362238 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICDL53763.2022.9962186" target="_blank" >https://doi.org/10.1109/ICDL53763.2022.9962186</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDL53763.2022.9962186" target="_blank" >10.1109/ICDL53763.2022.9962186</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning to reach to own body from spontaneous self-touch using a generative model
Popis výsledku v původním jazyce
When leaving the aquatic constrained environment of the womb, newborns are thrown into the world with essentially new laws and regularities that govern their interactions with the environment. Here, we study how spontaneous self-contacts can provide material for learning implicit models of the body and its action possibilities in the environment. Specifically, we investigate the space of only somatosensory (tactile and proprioceptive) activations during self-touch configurations in a simple model agent. Using biologically motivated overlapping receptive fields in these modalities, a variational autoencoder (VAE) in a denoising framework is trained on these inputs. The denoising properties of the VAE can be exploited to fill in the missing information. In particular, if tactile stimulation is provided on a single body part, the model provides a configuration that is closer to a previously experienced self-contact configuration. Iterative passes through the VAE reconstructions create a control loop that brings about reaching for stimuli on the body. Furthermore, due to the generative properties of the model, previously unsampled proprioceptive-tactile configurations can also be achieved. In the future, we will seek a closer comparison with empirical data on the kinematics of spontaneous self-touch in infants and the results of reaching for stimuli on the body.
Název v anglickém jazyce
Learning to reach to own body from spontaneous self-touch using a generative model
Popis výsledku anglicky
When leaving the aquatic constrained environment of the womb, newborns are thrown into the world with essentially new laws and regularities that govern their interactions with the environment. Here, we study how spontaneous self-contacts can provide material for learning implicit models of the body and its action possibilities in the environment. Specifically, we investigate the space of only somatosensory (tactile and proprioceptive) activations during self-touch configurations in a simple model agent. Using biologically motivated overlapping receptive fields in these modalities, a variational autoencoder (VAE) in a denoising framework is trained on these inputs. The denoising properties of the VAE can be exploited to fill in the missing information. In particular, if tactile stimulation is provided on a single body part, the model provides a configuration that is closer to a previously experienced self-contact configuration. Iterative passes through the VAE reconstructions create a control loop that brings about reaching for stimuli on the body. Furthermore, due to the generative properties of the model, previously unsampled proprioceptive-tactile configurations can also be achieved. In the future, we will seek a closer comparison with empirical data on the kinematics of spontaneous self-touch in infants and the results of reaching for stimuli on the body.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-24186X" target="_blank" >GX20-24186X: Vědomí celého povrchu těla pro bezpečnou a přirozenou interakci: od mozku ke kolaborativním robotům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE International Conference on Development and Learning (ICDL)
ISBN
978-1-6654-1311-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
328-335
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
London
Datum konání akce
12. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—