Relative Pose from a Calibrated and an Uncalibrated Smartphone Image
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362925" target="_blank" >RIV/68407700:21230/22:00362925 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52688.2022.01243" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.01243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52688.2022.01243" target="_blank" >10.1109/CVPR52688.2022.01243</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relative Pose from a Calibrated and an Uncalibrated Smartphone Image
Popis výsledku v původním jazyce
In this paper, we propose a new minimal and a non-minimal solver for estimating the relative camera pose together with the unknown focal length of the second camera. This configuration has a number of practical benefits, e.g., when processing large-scale datasets. Moreover, it is resistant to the typical degenerate cases of the traditional six-point algorithm. The minimal solver requires four point correspondences and exploits the gravity direction that the built-in IMU of recent smart devices recover. We also propose a linear solver that enables estimating the pose from a larger-than-minimal sample extremely efficiently which then can be improved by, e.g., bundle adjustment. The methods are tested on 35654 image pairs from publicly available real-world and new datasets. When combined with a recent robust estimator, they lead to results superior to the traditional solvers in terms of rotation, translation and focal length accuracy, while being notably faster.
Název v anglickém jazyce
Relative Pose from a Calibrated and an Uncalibrated Smartphone Image
Popis výsledku anglicky
In this paper, we propose a new minimal and a non-minimal solver for estimating the relative camera pose together with the unknown focal length of the second camera. This configuration has a number of practical benefits, e.g., when processing large-scale datasets. Moreover, it is resistant to the typical degenerate cases of the traditional six-point algorithm. The minimal solver requires four point correspondences and exploits the gravity direction that the built-in IMU of recent smart devices recover. We also propose a linear solver that enables estimating the pose from a larger-than-minimal sample extremely efficiently which then can be improved by, e.g., bundle adjustment. The methods are tested on 35654 image pairs from publicly available real-world and new datasets. When combined with a recent robust estimator, they lead to results superior to the traditional solvers in terms of rotation, translation and focal length accuracy, while being notably faster.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
978-1-6654-6946-3
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
12756-12765
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
New Orleans, Louisiana
Datum konání akce
19. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000870759105082