Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recall@k Surrogate Loss with Large Batches and Similarity Mixup

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362948" target="_blank" >RIV/68407700:21230/22:00362948 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/CVPR52688.2022.00735" target="_blank" >https://doi.org/10.1109/CVPR52688.2022.00735</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52688.2022.00735" target="_blank" >10.1109/CVPR52688.2022.00735</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recall@k Surrogate Loss with Large Batches and Similarity Mixup

  • Popis výsledku v původním jazyce

    This work focuses on learning deep visual representation models for retrieval by exploring the interplay between a new loss function, the batch size, and a new regularization approach. Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. A differentiable surrogate loss for the recall is proposed in this work. Using an implementation that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup regularization approach that operates on pairwise scalar similarities and virtually increases the batch size further. The suggested method achieves state-of-the-art performance in several image retrieval benchmarks when used for deep metric learning. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision.

  • Název v anglickém jazyce

    Recall@k Surrogate Loss with Large Batches and Similarity Mixup

  • Popis výsledku anglicky

    This work focuses on learning deep visual representation models for retrieval by exploring the interplay between a new loss function, the batch size, and a new regularization approach. Direct optimization, by gradient descent, of an evaluation metric, is not possible when it is non-differentiable, which is the case for recall in retrieval. A differentiable surrogate loss for the recall is proposed in this work. Using an implementation that sidesteps the hardware constraints of the GPU memory, the method trains with a very large batch size, which is essential for metrics computed on the entire retrieval database. It is assisted by an efficient mixup regularization approach that operates on pairwise scalar similarities and virtually increases the batch size further. The suggested method achieves state-of-the-art performance in several image retrieval benchmarks when used for deep metric learning. For instance-level recognition, the method outperforms similar approaches that train using an approximation of average precision.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceeding 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-6946-3

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Počet stran výsledku

    10

  • Strana od-do

    7492-7501

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    New Orleans, Louisiana

  • Datum konání akce

    19. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000870759100033