Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968139" target="_blank" >RIV/49777513:23520/23:43968139 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3349/paper6.pdf" target="_blank" >https://ceur-ws.org/Vol-3349/paper6.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Popis výsledku v původním jazyce
Image captioning is a deep learning task that involves computer vision methods to extract visual information from the image and also natural language processing to generate the result caption in natural language. Image captioning models, just like other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar. We train Oscar on different sizes of the training dataset and measure its performance in terms of accuracy and computational complexity. We observe that the computational time increases linearly with the amount of data used for training. However, the accuracy does not follow this linear trend and the relative improvement diminishes as we add more data to the training. We also measure the consistency of individual sizes of the training sets and observe that the more data we use for training the more consistent the metrics are. In addition to traditional evaluation metrics, we evaluate the performance using CLIP similarity. We investigate whether it can be used as a fully-fledged metric providing a unique advantage over the traditional metrics; it does not need reference captions that had to be acquired by human annotators. Our results show a high correlation between CLIP with the other metrics. This work provides valuable insights for understanding the requirements for training effective image captioning models. We believe our results can be transferred to other models, even in other deep-learning tasks. © 2023 Copyright for this paper by its authors.
Název v anglickém jazyce
Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Popis výsledku anglicky
Image captioning is a deep learning task that involves computer vision methods to extract visual information from the image and also natural language processing to generate the result caption in natural language. Image captioning models, just like other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar. We train Oscar on different sizes of the training dataset and measure its performance in terms of accuracy and computational complexity. We observe that the computational time increases linearly with the amount of data used for training. However, the accuracy does not follow this linear trend and the relative improvement diminishes as we add more data to the training. We also measure the consistency of individual sizes of the training sets and observe that the more data we use for training the more consistent the metrics are. In addition to traditional evaluation metrics, we evaluate the performance using CLIP similarity. We investigate whether it can be used as a fully-fledged metric providing a unique advantage over the traditional metrics; it does not need reference captions that had to be acquired by human annotators. Our results show a high correlation between CLIP with the other metrics. This work provides valuable insights for understanding the requirements for training effective image captioning models. We believe our results can be transferred to other models, even in other deep-learning tasks. © 2023 Copyright for this paper by its authors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
CEUR-WS
Místo vydání
Aachen
Místo konání akce
Krems a.d. Donau, Rakousko
Datum konání akce
15. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—