Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969948" target="_blank" >RIV/49777513:23520/23:43969948 - isvavai.cz</a>
Výsledek na webu
<a href="http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf" target="_blank" >http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Popis výsledku v původním jazyce
Image captioning is a deep learning task, which goal is to automatically generate textual description of an input image. It is a complex task that requires identifying and interpreting visual information and generating grammatically correct and fluent sentences. Because different individuals may consider various aspects of an image important, there isn’t any single correct caption. This means that there is no ideal evaluation metric for measuring caption quality, as different metrics may better evaluate different attributes of the caption. Image captioning models, just like other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar.
Název v anglickém jazyce
Exploring the Relationship between Dataset Size and Image Captioning Model Performance
Popis výsledku anglicky
Image captioning is a deep learning task, which goal is to automatically generate textual description of an input image. It is a complex task that requires identifying and interpreting visual information and generating grammatically correct and fluent sentences. Because different individuals may consider various aspects of an image important, there isn’t any single correct caption. This means that there is no ideal evaluation metric for measuring caption quality, as different metrics may better evaluate different attributes of the caption. Image captioning models, just like other deep learning models, need a large amount of training data and require a long time to train. In this work, we investigate the impact of using a smaller amount of training data on the performance of the standard image captioning model Oscar.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů