Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362995" target="_blank" >RIV/68407700:21230/22:00362995 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-20047-2_37" target="_blank" >https://doi.org/10.1007/978-3-031-20047-2_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-20047-2_37" target="_blank" >10.1007/978-3-031-20047-2_37</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

  • Popis výsledku v původním jazyce

    We present FEAR, a family of fast, efficient, accurate, and robust Siamese visual trackers. We present a novel and efficient way to benefit from dual-template representation for object model adaption, which incorporates temporal information with only a single learnable parameter. We further improve the tracker architecture with a pixel-wise fusion block. By plugging-in sophisticated backbones with the abovementioned modules, FEAR-M and FEAR-L trackers surpass most Siamese trackers on several academic benchmarks in both accuracy and efficiency. Employed with the lightweight backbone, the optimized version FEAR-XS offers more than 10 times faster tracking than current Siamese trackers while maintaining near state-of-the-art results. FEAR-XS tracker is 2.4x smaller and 4.3x faster than LightTrack with superior accuracy. In addition, we expand the definition of the model efficiency by introducing FEAR benchmark that assesses energy consumption and execution speed. We show that energy consumption is a limiting factor for trackers on mobile devices. Source code, pretrained models, and evaluation protocol are available at https://github.com/PinataFarms/FEARTracker.

  • Název v anglickém jazyce

    FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

  • Popis výsledku anglicky

    We present FEAR, a family of fast, efficient, accurate, and robust Siamese visual trackers. We present a novel and efficient way to benefit from dual-template representation for object model adaption, which incorporates temporal information with only a single learnable parameter. We further improve the tracker architecture with a pixel-wise fusion block. By plugging-in sophisticated backbones with the abovementioned modules, FEAR-M and FEAR-L trackers surpass most Siamese trackers on several academic benchmarks in both accuracy and efficiency. Employed with the lightweight backbone, the optimized version FEAR-XS offers more than 10 times faster tracking than current Siamese trackers while maintaining near state-of-the-art results. FEAR-XS tracker is 2.4x smaller and 4.3x faster than LightTrack with superior accuracy. In addition, we expand the definition of the model efficiency by introducing FEAR benchmark that assesses energy consumption and execution speed. We show that energy consumption is a limiting factor for trackers on mobile devices. Source code, pretrained models, and evaluation protocol are available at https://github.com/PinataFarms/FEARTracker.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer Vision - ECCV 2022, Part XXII

  • ISBN

    978-3-031-20046-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    20

  • Strana od-do

    644-663

  • Název nakladatele

    Springer, Cham

  • Místo vydání

  • Místo konání akce

    Tel Aviv

  • Datum konání akce

    23. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000904116000037