Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trans2k: Unlocking the Power of Deep Models for Transparent Object Tracking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363005" target="_blank" >RIV/68407700:21230/22:00363005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://bmvc2022.mpi-inf.mpg.de/470/" target="_blank" >https://bmvc2022.mpi-inf.mpg.de/470/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trans2k: Unlocking the Power of Deep Models for Transparent Object Tracking

  • Popis výsledku v původním jazyce

    Visual object tracking has focused predominantly on opaque objects, while transparent object tracking received very little attention. Motivated by the uniqueness of transparent objects in that their appearance is directly affected by the background, the first dedicated evaluation dataset has emerged recently. We contribute to this effort by proposing the first transparent object tracking training dataset Trans2k that consists of over 2k sequences with 104,343 images overall, annotated by bounding boxes and segmentation masks. Noting that transparent objects can be realistically rendered by modern renderers, we quantify domain-specific attributes and render the dataset containing visual attributes and tracking situations not covered in the existing object training datasets. We observe a consistent performance boost (up to 16%) across a diverse set of modern tracking architectures when trained using Trans2k, and show insights not previously possible due to the lack of appropriate training sets. The dataset and the rendering engine will be publicly released to unlock the power of modern learning-based trackers and foster new designs in transparent object tracking.

  • Název v anglickém jazyce

    Trans2k: Unlocking the Power of Deep Models for Transparent Object Tracking

  • Popis výsledku anglicky

    Visual object tracking has focused predominantly on opaque objects, while transparent object tracking received very little attention. Motivated by the uniqueness of transparent objects in that their appearance is directly affected by the background, the first dedicated evaluation dataset has emerged recently. We contribute to this effort by proposing the first transparent object tracking training dataset Trans2k that consists of over 2k sequences with 104,343 images overall, annotated by bounding boxes and segmentation masks. Noting that transparent objects can be realistically rendered by modern renderers, we quantify domain-specific attributes and render the dataset containing visual attributes and tracking situations not covered in the existing object training datasets. We observe a consistent performance boost (up to 16%) across a diverse set of modern tracking architectures when trained using Trans2k, and show insights not previously possible due to the lack of appropriate training sets. The dataset and the rendering engine will be publicly released to unlock the power of modern learning-based trackers and foster new designs in transparent object tracking.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS05010008" target="_blank" >SS05010008: Detekce, identifikace a monitoring živočichů pokročilými metodami počítačového vidění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů