A New Dataset and a Distractor-Aware Architecture for Transparent Object Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380636" target="_blank" >RIV/68407700:21230/24:00380636 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11263-024-02010-0" target="_blank" >https://doi.org/10.1007/s11263-024-02010-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-024-02010-0" target="_blank" >10.1007/s11263-024-02010-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Dataset and a Distractor-Aware Architecture for Transparent Object Tracking
Popis výsledku v původním jazyce
Performance of modern trackers degrades substantially on transparent objects compared to opaque objects. This is largely due to two distinct reasons. Transparent objects are unique in that their appearance is directly affected by the background. Furthermore, transparent object scenes often contain many visually similar objects (distractors), which often lead to tracking failure. However, development of modern tracking architectures requires large training sets, which do not exist in transparent object tracking. We present two contributions addressing the aforementioned issues. We propose the first transparent object tracking training dataset Trans2k that consists of over 2k sequences with 104,343 images overall, annotated by bounding boxes and segmentation masks. Standard trackers trained on this dataset consistently improve by up to 16%. Our second contribution is a new distractor-aware transparent object tracker (DiTra) that treats localization accuracy and target identification as separate tasks and implements them by a novel architecture. DiTra sets a new state-of-the-art in transparent object tracking and generalizes well to opaque objects.
Název v anglickém jazyce
A New Dataset and a Distractor-Aware Architecture for Transparent Object Tracking
Popis výsledku anglicky
Performance of modern trackers degrades substantially on transparent objects compared to opaque objects. This is largely due to two distinct reasons. Transparent objects are unique in that their appearance is directly affected by the background. Furthermore, transparent object scenes often contain many visually similar objects (distractors), which often lead to tracking failure. However, development of modern tracking architectures requires large training sets, which do not exist in transparent object tracking. We present two contributions addressing the aforementioned issues. We propose the first transparent object tracking training dataset Trans2k that consists of over 2k sequences with 104,343 images overall, annotated by bounding boxes and segmentation masks. Standard trackers trained on this dataset consistently improve by up to 16%. Our second contribution is a new distractor-aware transparent object tracker (DiTra) that treats localization accuracy and target identification as separate tasks and implements them by a novel architecture. DiTra sets a new state-of-the-art in transparent object tracking and generalizes well to opaque objects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
1573-1405
Svazek periodika
132
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
2729-2742
Kód UT WoS článku
001162753700002
EID výsledku v databázi Scopus
2-s2.0-85185117575