On Speeding Up Methods for Identifying Redundant Actions in Plans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363584" target="_blank" >RIV/68407700:21230/22:00363584 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/icaps.v32i1.19808" target="_blank" >https://doi.org/10.1609/icaps.v32i1.19808</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/icaps.v32i1.19808" target="_blank" >10.1609/icaps.v32i1.19808</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Speeding Up Methods for Identifying Redundant Actions in Plans
Popis výsledku v původním jazyce
Satisficing planning aims at generating plans that are not necessarily optimal. Often, minimising plan generation time negatively affects quality of generated plans. Acquiring plans quickly might be of critical importance in decision-making systems that operate nearly in realtime. However, (very) suboptimal plans might be expensive to execute and more prone to failures. Optimising plans after they are generated, in a spare time, can improve their quality. This paper focuses on speeding up the (Greedy) Action Elimination methods, which are used for identifying and removing redundant actions from plans in polynomial time. We present two enhancements of these methods: Plan Action Landmarks, actions that are not redundant in a given plan, and Action Cycles which are subsequences of actions which if removed do not affect the state trajectory after the last action of the cycle. We evaluate the introduced methods on benchmark problems from the Agile tracks of the International Planning Competition and on plans generated by several state-of-the-art planners, successful in the recent editions of the competition. 2022, Association for the Advancement of Artificial Intelligence.
Název v anglickém jazyce
On Speeding Up Methods for Identifying Redundant Actions in Plans
Popis výsledku anglicky
Satisficing planning aims at generating plans that are not necessarily optimal. Often, minimising plan generation time negatively affects quality of generated plans. Acquiring plans quickly might be of critical importance in decision-making systems that operate nearly in realtime. However, (very) suboptimal plans might be expensive to execute and more prone to failures. Optimising plans after they are generated, in a spare time, can improve their quality. This paper focuses on speeding up the (Greedy) Action Elimination methods, which are used for identifying and removing redundant actions from plans in polynomial time. We present two enhancements of these methods: Plan Action Landmarks, actions that are not redundant in a given plan, and Action Cycles which are subsequences of actions which if removed do not affect the state trajectory after the last action of the cycle. We evaluate the introduced methods on benchmark problems from the Agile tracks of the International Planning Competition and on plans generated by several state-of-the-art planners, successful in the recent editions of the competition. 2022, Association for the Advancement of Artificial Intelligence.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling, ICAPS 2022
ISBN
978-1-57735-874-9
ISSN
2334-0835
e-ISSN
—
Počet stran výsledku
9
Strana od-do
252-260
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
Singapur
Datum konání akce
19. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—