A Vision-based System for Social Insect Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00366727" target="_blank" >RIV/68407700:21230/22:00366727 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/RAAI56146.2022.10092977" target="_blank" >https://doi.org/10.1109/RAAI56146.2022.10092977</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RAAI56146.2022.10092977" target="_blank" >10.1109/RAAI56146.2022.10092977</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Vision-based System for Social Insect Tracking
Popis výsledku v původním jazyce
Socia1 insects, especially honeybees, play an essential role in nature, and their recent decline threatens the stability of many ecosystems. The behaviour of social insect colonies is typically governed by a central individual, e.g., by the honeybee queen. The RoboRoyale project aims to use robots to interact with the queen to affect her behaviour and the entire colony’s activity. This paper presents a necessary component of such a robotic system, a method capable of real-time detection, localisation, and tracking of the honeybee queen inside a large colony. To overcome problems with occlusions and computational complexity, we propose to combine two vision-based methods for fiducial marker localisation and tracking. The experiments performed on the data captured from inside the beehives demonstrate that the resulting algorithm outperforms its predecessors in terms of detection precision, recall, and localisation accuracy. The achieved performance allowed us to integrate the method into a larger system capable of physically tracking a honeybee queen inside its colony. The ability to observe the queen in fine detail for prolonged periods of time already resulted in unique observations of queen-worker interactions. The knowledge will be crucial in designing a system capable of interacting with the honeybee queen and affecting her activity.
Název v anglickém jazyce
A Vision-based System for Social Insect Tracking
Popis výsledku anglicky
Socia1 insects, especially honeybees, play an essential role in nature, and their recent decline threatens the stability of many ecosystems. The behaviour of social insect colonies is typically governed by a central individual, e.g., by the honeybee queen. The RoboRoyale project aims to use robots to interact with the queen to affect her behaviour and the entire colony’s activity. This paper presents a necessary component of such a robotic system, a method capable of real-time detection, localisation, and tracking of the honeybee queen inside a large colony. To overcome problems with occlusions and computational complexity, we propose to combine two vision-based methods for fiducial marker localisation and tracking. The experiments performed on the data captured from inside the beehives demonstrate that the resulting algorithm outperforms its predecessors in terms of detection precision, recall, and localisation accuracy. The achieved performance allowed us to integrate the method into a larger system capable of physically tracking a honeybee queen inside its colony. The ability to observe the queen in fine detail for prolonged periods of time already resulted in unique observations of queen-worker interactions. The knowledge will be crucial in designing a system capable of interacting with the honeybee queen and affecting her activity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 2nd International Conference on Robotics, Automation and Artificial Intelligence
ISBN
978-1-6654-5944-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
277-283
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Singapore
Datum konání akce
9. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—