Beating the market with a bad predictive model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00356734" target="_blank" >RIV/68407700:21230/23:00356734 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijforecast.2022.02.001" target="_blank" >https://doi.org/10.1016/j.ijforecast.2022.02.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijforecast.2022.02.001" target="_blank" >10.1016/j.ijforecast.2022.02.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beating the market with a bad predictive model
Popis výsledku v původním jazyce
It is a common misconception that in order to make consistent profits as a trader, one needs to possess some extra information leading to an asset value estimation that is more accurate than that reflected by the current market price. While the idea makes intuitive sense and is also well substantiated by the widely popular Kelly criterion, we prove that it is generally possible to make systematic profits with a completely inferior price-predicting model. The key idea is to alter the training objective of the predictive models to explicitly decorrelate them from the market. By doing so, we can exploit inconspicuous biases in the market maker’s pricing, and profit from the inherent advantage of the market taker. We introduce the problem setting throughout the diverse domains of stock trading and sports betting to provide insights into the common underlying properties of profitable predictive models, their connections to standard portfolio optimization strategies, and the commonly overlooked advantage of the market taker. Consequently, we prove the desirability of the decorrelation objective across common market distributions, translate the concept into a practical machine learning setting, and demonstrate its viability with real-world market data.
Název v anglickém jazyce
Beating the market with a bad predictive model
Popis výsledku anglicky
It is a common misconception that in order to make consistent profits as a trader, one needs to possess some extra information leading to an asset value estimation that is more accurate than that reflected by the current market price. While the idea makes intuitive sense and is also well substantiated by the widely popular Kelly criterion, we prove that it is generally possible to make systematic profits with a completely inferior price-predicting model. The key idea is to alter the training objective of the predictive models to explicitly decorrelate them from the market. By doing so, we can exploit inconspicuous biases in the market maker’s pricing, and profit from the inherent advantage of the market taker. We introduce the problem setting throughout the diverse domains of stock trading and sports betting to provide insights into the common underlying properties of profitable predictive models, their connections to standard portfolio optimization strategies, and the commonly overlooked advantage of the market taker. Consequently, we prove the desirability of the decorrelation objective across common market distributions, translate the concept into a practical machine learning setting, and demonstrate its viability with real-world market data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-29260S" target="_blank" >GA20-29260S: Sdružené učení a optimalizace portfolií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Forecasting
ISSN
0169-2070
e-ISSN
1872-8200
Svazek periodika
39
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
691-719
Kód UT WoS článku
000955906600001
EID výsledku v databázi Scopus
2-s2.0-85126942697