Large-to-small Image Resolution Asymmetry in Deep Metric Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00362078" target="_blank" >RIV/68407700:21230/23:00362078 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/WACV56688.2023.00150" target="_blank" >https://doi.org/10.1109/WACV56688.2023.00150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV56688.2023.00150" target="_blank" >10.1109/WACV56688.2023.00150</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large-to-small Image Resolution Asymmetry in Deep Metric Learning
Popis výsledku v původním jazyce
Deep metric learning for vision is trained by optimizing a representation network to map (non-)matching image pairs to (non-)similar representations. During testing, which typically corresponds to image retrieval, both database and query examples are processed by the same network to obtain the representation used for similarity estimation and ranking. In this work, we explore an asymmetric setup by light-weight processing of the query at a small image resolution to enable fast representation extraction. The goal is to obtain a network for database examples that is trained to operate on large resolution images and benefits from fine-grained image details, and a second network for query examples that operates on small resolution images but preserves a representation space aligned with that of the database network. We achieve this with a distillation approach that transfers knowledge from a fixed teacher network to a student via a loss that operates per image and solely relies on coupled augmentations without the use of any labels. In contrast to prior work that explores such asymmetry from the point of view of different network architectures, this work uses the same architecture but modifies the image resolution. We conclude that resolution asymmetry is a better way to optimize the performance/efficiency trade-off than architecture asymmetry. Evaluation is performed on three standard deep metric learning benchmarks, namely CUB200, Cars196, and SOP. Code: https://github.com/pavelsuma/raml
Název v anglickém jazyce
Large-to-small Image Resolution Asymmetry in Deep Metric Learning
Popis výsledku anglicky
Deep metric learning for vision is trained by optimizing a representation network to map (non-)matching image pairs to (non-)similar representations. During testing, which typically corresponds to image retrieval, both database and query examples are processed by the same network to obtain the representation used for similarity estimation and ranking. In this work, we explore an asymmetric setup by light-weight processing of the query at a small image resolution to enable fast representation extraction. The goal is to obtain a network for database examples that is trained to operate on large resolution images and benefits from fine-grained image details, and a second network for query examples that operates on small resolution images but preserves a representation space aligned with that of the database network. We achieve this with a distillation approach that transfers knowledge from a fixed teacher network to a student via a loss that operates per image and solely relies on coupled augmentations without the use of any labels. In contrast to prior work that explores such asymmetry from the point of view of different network architectures, this work uses the same architecture but modifies the image resolution. We conclude that resolution asymmetry is a better way to optimize the performance/efficiency trade-off than architecture asymmetry. Evaluation is performed on three standard deep metric learning benchmarks, namely CUB200, Cars196, and SOP. Code: https://github.com/pavelsuma/raml
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-28830M" target="_blank" >GM21-28830M: Učení Univerzální Vizuální Reprezentace s Omezenou Supervizí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-6654-9346-8
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
10
Strana od-do
1451-1460
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Waikoloa
Datum konání akce
3. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000971500201053