Multiple Oracle Algorithm to Solve Continuous Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364558" target="_blank" >RIV/68407700:21230/23:00364558 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-26369-9_8" target="_blank" >https://doi.org/10.1007/978-3-031-26369-9_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-26369-9_8" target="_blank" >10.1007/978-3-031-26369-9_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Oracle Algorithm to Solve Continuous Games
Popis výsledku v původním jazyce
Continuous games are multiplayer games in which strategy sets are compact and utility functions are continuous. These games typically have a highly complicated structure of Nash equilibria, and numerical methods for the equilibrium computation are known only for particular classes of continuous games, such as two-player polynomial games or games in which pure equilibria are guaranteed to exist. This contribution focuses on the computation and approximation of a mixed strategy equilibrium for the whole class of multiplayer general-sum continuous games. We vastly extend the scope of applicability of the double oracle algorithm, initially designed and proved to converge only for two-player zero-sum games. Specifically, we propose an iterative strategy generation technique, which splits the original problem into the master problem with only a finite subset of strategies being considered, and the subproblem in which an oracle finds the best response of each player. This simple method is guaranteed to recover an approximate equilibrium in finitely many iterations. Further, we argue that the Wasserstein distance (the earth mover’s distance) is the right metric for the space of mixed strategies for our purposes. Our main result is the convergence of this algorithm in the Wasserstein distance to an equilibrium of the original continuous game. The numerical experiments show the performance of our method on several classes of games including randomly generated examples.
Název v anglickém jazyce
Multiple Oracle Algorithm to Solve Continuous Games
Popis výsledku anglicky
Continuous games are multiplayer games in which strategy sets are compact and utility functions are continuous. These games typically have a highly complicated structure of Nash equilibria, and numerical methods for the equilibrium computation are known only for particular classes of continuous games, such as two-player polynomial games or games in which pure equilibria are guaranteed to exist. This contribution focuses on the computation and approximation of a mixed strategy equilibrium for the whole class of multiplayer general-sum continuous games. We vastly extend the scope of applicability of the double oracle algorithm, initially designed and proved to converge only for two-player zero-sum games. Specifically, we propose an iterative strategy generation technique, which splits the original problem into the master problem with only a finite subset of strategies being considered, and the subproblem in which an oracle finds the best response of each player. This simple method is guaranteed to recover an approximate equilibrium in finitely many iterations. Further, we argue that the Wasserstein distance (the earth mover’s distance) is the right metric for the space of mixed strategies for our purposes. Our main result is the convergence of this algorithm in the Wasserstein distance to an equilibrium of the original continuous game. The numerical experiments show the performance of our method on several classes of games including randomly generated examples.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Decision and Game Theory for Security
ISBN
978-3-031-26369-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
149-167
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Pittsburgh
Datum konání akce
26. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—