Double Oracle Algorithm for Computing Equilibria in Continuous Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350227" target="_blank" >RIV/68407700:21230/21:00350227 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/1664" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/1664</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Double Oracle Algorithm for Computing Equilibria in Continuous Games
Popis výsledku v původním jazyce
Many efficient algorithms have been designed to recover Nash equilibria of various classes of finite games. Special classes of continuous games with infinite strategy spaces, such as polynomial games, can be solved by semidefinite programming. In general, however, continuous games are not directly amenable to computational procedures. In this contribution, we develop an iterative strategy generation technique for finding a Nash equilibrium in a whole class of continuous two-person zero-sum games with compact strategy sets. The procedure, which is called the double oracle algorithm, has been successfully applied to large finite games in the past. We prove the convergence of the double oracle algorithm to a Nash equilibrium. Moreover, the algorithm is guaranteed to recover an approximate equilibrium in finitely-many steps. Our numerical experiments show that it outperforms fictitious play on several examples of games appearing in the literature. In particular, we provide a detailed analysis of experiments with a version of the continuous Colonel Blotto game.
Název v anglickém jazyce
Double Oracle Algorithm for Computing Equilibria in Continuous Games
Popis výsledku anglicky
Many efficient algorithms have been designed to recover Nash equilibria of various classes of finite games. Special classes of continuous games with infinite strategy spaces, such as polynomial games, can be solved by semidefinite programming. In general, however, continuous games are not directly amenable to computational procedures. In this contribution, we develop an iterative strategy generation technique for finding a Nash equilibrium in a whole class of continuous two-person zero-sum games with compact strategy sets. The procedure, which is called the double oracle algorithm, has been successfully applied to large finite games in the past. We prove the convergence of the double oracle algorithm to a Nash equilibrium. Moreover, the algorithm is guaranteed to recover an approximate equilibrium in finitely-many steps. Our numerical experiments show that it outperforms fictitious play on several examples of games appearing in the literature. In particular, we provide a detailed analysis of experiments with a version of the continuous Colonel Blotto game.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
—
e-ISSN
2374-3468
Počet stran výsledku
8
Strana od-do
5070-5077
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Virtual Conference
Datum konání akce
2. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000680423505019