Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367004" target="_blank" >RIV/68407700:21230/23:00367004 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/23:00367004

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TNSRE.2023.3293051" target="_blank" >https://doi.org/10.1109/TNSRE.2023.3293051</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNSRE.2023.3293051" target="_blank" >10.1109/TNSRE.2023.3293051</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

  • Popis výsledku v původním jazyce

    Major Depressive Disorder (MDD) – can be evaluated by advanced neurocomputing and traditional machine learning techniques. This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes. In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression). Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets. The algorithm, which is estimated by 10-fold cross-validation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41. After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80. It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity. Our study also uncovered the different brain architectural connections by relying on phase coherence analysis. Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe. We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity. Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals. These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.

  • Název v anglickém jazyce

    Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions

  • Popis výsledku anglicky

    Major Depressive Disorder (MDD) – can be evaluated by advanced neurocomputing and traditional machine learning techniques. This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes. In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression). Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets. The algorithm, which is estimated by 10-fold cross-validation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41. After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80. It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity. Our study also uncovered the different brain architectural connections by relying on phase coherence analysis. Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe. We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity. Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals. These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10600 - Biological sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Neural Systems and Rehabilitation Engineering

  • ISSN

    1534-4320

  • e-ISSN

    1558-0210

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    2964-2973

  • Kód UT WoS článku

    001037757900001

  • EID výsledku v databázi Scopus

    2-s2.0-85164431559