Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367004" target="_blank" >RIV/68407700:21230/23:00367004 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00367004
Výsledek na webu
<a href="https://doi.org/10.1109/TNSRE.2023.3293051" target="_blank" >https://doi.org/10.1109/TNSRE.2023.3293051</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNSRE.2023.3293051" target="_blank" >10.1109/TNSRE.2023.3293051</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions
Popis výsledku v původním jazyce
Major Depressive Disorder (MDD) – can be evaluated by advanced neurocomputing and traditional machine learning techniques. This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes. In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression). Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets. The algorithm, which is estimated by 10-fold cross-validation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41. After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80. It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity. Our study also uncovered the different brain architectural connections by relying on phase coherence analysis. Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe. We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity. Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals. These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.
Název v anglickém jazyce
Classifying and Scoring Major Depressive Disorders by Residual Neural Networks on Specific Frequencies and Brain Regions
Popis výsledku anglicky
Major Depressive Disorder (MDD) – can be evaluated by advanced neurocomputing and traditional machine learning techniques. This study aims to develop an automatic system based on a Brain-Computer Interface (BCI) to classify and score depressive patients by specific frequency bands and electrodes. In this study, two Residual Neural Networks (ResNets) based on electroencephalogram (EEG) monitoring are presented for classifying depression (classifier) and for scoring depressive severity (regression). Significant frequency bands and specific brain regions are selected to improve the performance of the ResNets. The algorithm, which is estimated by 10-fold cross-validation, attained an average accuracy rate ranging from 0.371 to 0.571 and achieved average Root-Mean-Square Error (RMSE) from 7.25 to 8.41. After using the beta frequency band and 16 specific EEG channels, we obtained the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80. It was discovered that signals extracted from the beta band are more distinctive in depression classification, and these selected channels tend to perform better on scoring depressive severity. Our study also uncovered the different brain architectural connections by relying on phase coherence analysis. Increased delta deactivation accompanied by strong beta activation is the main feature of depression when the depression symptom is becoming more severe. We can therefore conclude that the model developed here is acceptable for classifying depression and for scoring depressive severity. Our model can offer physicians a model that consists of topological dependency, quantified semantic depressive symptoms and clinical features by using EEG signals. These selected brain regions and significant beta frequency bands can improve the performance of the BCI system for detecting depression and scoring depressive severity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Systems and Rehabilitation Engineering
ISSN
1534-4320
e-ISSN
1558-0210
Svazek periodika
31
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
2964-2973
Kód UT WoS článku
001037757900001
EID výsledku v databázi Scopus
2-s2.0-85164431559