Non-contact non-resonant atomic force microscopy method for measurements of highly mobile molecules and nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367156" target="_blank" >RIV/68407700:21230/23:00367156 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ultramic.2023.113816" target="_blank" >https://doi.org/10.1016/j.ultramic.2023.113816</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ultramic.2023.113816" target="_blank" >10.1016/j.ultramic.2023.113816</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-contact non-resonant atomic force microscopy method for measurements of highly mobile molecules and nanoparticles
Popis výsledku v původním jazyce
Atomic force microscopy (AFM) is nowadays indispensable versatile scanning probe method widely employed for fundamental and applied research in physics, chemistry, biology as well as industrial metrology. Conventional AFM systems can operate in various environments such as ultra-high vacuum, electrolyte solutions, or controlled gas atmosphere. Measurements in ambient air are prevalent due to their technical simplicity; however, there are drawbacks such as formation of water meniscus that greatly increases attractive interaction (adhesion) between the tip and the sample, reduced spatial resolution, and too strong interactions leading to tip and/or sample modifications. Here we show how the attractive forces in AFM under ambient conditions can be used with advantage to probe surface properties in a very sensitive way even on highly mobile molecules and nanoparticles. We introduce a stable non-contact non-resonant (NCNR) AFM method which enables to reliably perform measurements in the attractive force regime even in air by controlling the tip position in the intimate surface vicinity without touching it. We demonstrate proof-of-concept results on helicene-based macrocycles, DNA on mica, and nanodiamonds on SiO2. We compare the results with other conventional AFM regimes, showing NCNR advantages such as higher spatial resolution, reduced tip contamination, and negligible sample modification. We analyze principle physical and chemical mechanisms influencing the measurements, discuss issues of stability and various possible method implementations. We explain how the NCNR method can be applied in any AFM system by a mere software modification. The method thus opens a new research field for measurements of highly sensitive and mobile nanoscale objects under air and other environments.
Název v anglickém jazyce
Non-contact non-resonant atomic force microscopy method for measurements of highly mobile molecules and nanoparticles
Popis výsledku anglicky
Atomic force microscopy (AFM) is nowadays indispensable versatile scanning probe method widely employed for fundamental and applied research in physics, chemistry, biology as well as industrial metrology. Conventional AFM systems can operate in various environments such as ultra-high vacuum, electrolyte solutions, or controlled gas atmosphere. Measurements in ambient air are prevalent due to their technical simplicity; however, there are drawbacks such as formation of water meniscus that greatly increases attractive interaction (adhesion) between the tip and the sample, reduced spatial resolution, and too strong interactions leading to tip and/or sample modifications. Here we show how the attractive forces in AFM under ambient conditions can be used with advantage to probe surface properties in a very sensitive way even on highly mobile molecules and nanoparticles. We introduce a stable non-contact non-resonant (NCNR) AFM method which enables to reliably perform measurements in the attractive force regime even in air by controlling the tip position in the intimate surface vicinity without touching it. We demonstrate proof-of-concept results on helicene-based macrocycles, DNA on mica, and nanodiamonds on SiO2. We compare the results with other conventional AFM regimes, showing NCNR advantages such as higher spatial resolution, reduced tip contamination, and negligible sample modification. We analyze principle physical and chemical mechanisms influencing the measurements, discuss issues of stability and various possible method implementations. We explain how the NCNR method can be applied in any AFM system by a mere software modification. The method thus opens a new research field for measurements of highly sensitive and mobile nanoscale objects under air and other environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ultramicroscopy
ISSN
0304-3991
e-ISSN
1879-2723
Svazek periodika
253
Číslo periodika v rámci svazku
113816
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001052384600001
EID výsledku v databázi Scopus
2-s2.0-85166349640