Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367294" target="_blank" >RIV/68407700:21230/23:00367294 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10601-023-09349-0" target="_blank" >https://doi.org/10.1007/s10601-023-09349-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10601-023-09349-0" target="_blank" >10.1007/s10601-023-09349-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs

  • Popis výsledku v původním jazyce

    We study a constraint propagation algorithm to detect infeasibility of a system of linear inequalities over continuous variables, which we call activity propagation. Each iteration of this algorithm chooses a subset of the inequalities and if it infers that some of them are always active (i.e., always hold with equality), it turns them into equalities. We show that this algorithm can be described as chaotic iterations and its fixed points can be characterized by a local consistency, in a similar way to traditional local consistency methods in CSP such as arc consistency. Via complementary slackness, activity propagation can be employed to iteratively improve a dual-feasible solution of large-scale linear programs in a primal-dual loop – a special case of this method is the Virtual Arc Consistency algorithm by Cooper et al. As our second contribution, we show that this method has the same set of fixed points as block-coordinate descent (BCD) applied to the dual linear program. While BCD is popular in large-scale optimization, its fixed points need not be global optima even for convex problems and a succinct characterization of convex problems optimally solvable by BCD remains elusive. Our result may open the way for such a characterization since it allows us to characterize BCD fixed points in terms of local consistencies.

  • Název v anglickém jazyce

    Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs

  • Popis výsledku anglicky

    We study a constraint propagation algorithm to detect infeasibility of a system of linear inequalities over continuous variables, which we call activity propagation. Each iteration of this algorithm chooses a subset of the inequalities and if it infers that some of them are always active (i.e., always hold with equality), it turns them into equalities. We show that this algorithm can be described as chaotic iterations and its fixed points can be characterized by a local consistency, in a similar way to traditional local consistency methods in CSP such as arc consistency. Via complementary slackness, activity propagation can be employed to iteratively improve a dual-feasible solution of large-scale linear programs in a primal-dual loop – a special case of this method is the Virtual Arc Consistency algorithm by Cooper et al. As our second contribution, we show that this method has the same set of fixed points as block-coordinate descent (BCD) applied to the dual linear program. While BCD is popular in large-scale optimization, its fixed points need not be global optima even for convex problems and a succinct characterization of convex problems optimally solvable by BCD remains elusive. Our result may open the way for such a characterization since it allows us to characterize BCD fixed points in terms of local consistencies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CONSTRAINTS

  • ISSN

    1383-7133

  • e-ISSN

    1572-9354

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    33

  • Strana od-do

    244-276

  • Kód UT WoS článku

    001035511000001

  • EID výsledku v databázi Scopus

    2-s2.0-85165707206