Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367294" target="_blank" >RIV/68407700:21230/23:00367294 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10601-023-09349-0" target="_blank" >https://doi.org/10.1007/s10601-023-09349-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10601-023-09349-0" target="_blank" >10.1007/s10601-023-09349-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs
Popis výsledku v původním jazyce
We study a constraint propagation algorithm to detect infeasibility of a system of linear inequalities over continuous variables, which we call activity propagation. Each iteration of this algorithm chooses a subset of the inequalities and if it infers that some of them are always active (i.e., always hold with equality), it turns them into equalities. We show that this algorithm can be described as chaotic iterations and its fixed points can be characterized by a local consistency, in a similar way to traditional local consistency methods in CSP such as arc consistency. Via complementary slackness, activity propagation can be employed to iteratively improve a dual-feasible solution of large-scale linear programs in a primal-dual loop – a special case of this method is the Virtual Arc Consistency algorithm by Cooper et al. As our second contribution, we show that this method has the same set of fixed points as block-coordinate descent (BCD) applied to the dual linear program. While BCD is popular in large-scale optimization, its fixed points need not be global optima even for convex problems and a succinct characterization of convex problems optimally solvable by BCD remains elusive. Our result may open the way for such a characterization since it allows us to characterize BCD fixed points in terms of local consistencies.
Název v anglickém jazyce
Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs
Popis výsledku anglicky
We study a constraint propagation algorithm to detect infeasibility of a system of linear inequalities over continuous variables, which we call activity propagation. Each iteration of this algorithm chooses a subset of the inequalities and if it infers that some of them are always active (i.e., always hold with equality), it turns them into equalities. We show that this algorithm can be described as chaotic iterations and its fixed points can be characterized by a local consistency, in a similar way to traditional local consistency methods in CSP such as arc consistency. Via complementary slackness, activity propagation can be employed to iteratively improve a dual-feasible solution of large-scale linear programs in a primal-dual loop – a special case of this method is the Virtual Arc Consistency algorithm by Cooper et al. As our second contribution, we show that this method has the same set of fixed points as block-coordinate descent (BCD) applied to the dual linear program. While BCD is popular in large-scale optimization, its fixed points need not be global optima even for convex problems and a succinct characterization of convex problems optimally solvable by BCD remains elusive. Our result may open the way for such a characterization since it allows us to characterize BCD fixed points in terms of local consistencies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CONSTRAINTS
ISSN
1383-7133
e-ISSN
1572-9354
Svazek periodika
28
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
244-276
Kód UT WoS článku
001035511000001
EID výsledku v databázi Scopus
2-s2.0-85165707206