Overview of Using Signaling Data from Radio Interface with Machine Learning Approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368057" target="_blank" >RIV/68407700:21230/23:00368057 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICMT58149.2023.10171266" target="_blank" >https://doi.org/10.1109/ICMT58149.2023.10171266</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICMT58149.2023.10171266" target="_blank" >10.1109/ICMT58149.2023.10171266</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overview of Using Signaling Data from Radio Interface with Machine Learning Approaches
Popis výsledku v původním jazyce
Mobile networks technologies are evolving rapidly in parallel with smart mobile devices wide spreading. On other hand, utilization of Artificial Intelligence in mobile networks has been increasing widely. It starts from mobile phones applications to mobile network operations, planning, optimization, etc. In this paper, an overview of using signalling data from radio interface in cooperation with machine learning techniques is introduced. The main machine learning types and models are summarized, as well as some of previous related works mainly depended on applying Machine learning on radio signalling. Benefits of those Machine learning-Signaling combinations vary from enhancing network key performance indicators to predicting user's specifications as trajectory, location, work, gender, etc. Moreover, mobile network planning, coverage evaluation, path loss prediction and channel modeling can be enhanced by using machine learning.
Název v anglickém jazyce
Overview of Using Signaling Data from Radio Interface with Machine Learning Approaches
Popis výsledku anglicky
Mobile networks technologies are evolving rapidly in parallel with smart mobile devices wide spreading. On other hand, utilization of Artificial Intelligence in mobile networks has been increasing widely. It starts from mobile phones applications to mobile network operations, planning, optimization, etc. In this paper, an overview of using signalling data from radio interface in cooperation with machine learning techniques is introduced. The main machine learning types and models are summarized, as well as some of previous related works mainly depended on applying Machine learning on radio signalling. Benefits of those Machine learning-Signaling combinations vary from enhancing network key performance indicators to predicting user's specifications as trajectory, location, work, gender, etc. Moreover, mobile network planning, coverage evaluation, path loss prediction and channel modeling can be enhanced by using machine learning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 International Conference on Military Technologies (ICMT)
ISBN
979-8-3503-2568-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Brno
Datum konání akce
23. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—