Machine Learning-Based Channel Quality Prediction in 6G Mobile Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369232" target="_blank" >RIV/68407700:21230/23:00369232 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MCOM.001.2200305" target="_blank" >https://doi.org/10.1109/MCOM.001.2200305</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MCOM.001.2200305" target="_blank" >10.1109/MCOM.001.2200305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning-Based Channel Quality Prediction in 6G Mobile Networks
Popis výsledku v původním jazyce
Channel quality is an essential information for management of radio resources in mobile networks. To acquire the channel quality information, pilot (or reference) signals are commonly transmitted, measured, and reported to the network. However, the process of channel quality acquisition is both time and energy consuming. Moreover, the radio resources are competitively shared by the pilot signals and users' data. This motivates an employment of prediction-based approaches determining the channel quality at low cost to avoid over-consumption of resources for pilots. Machine learning is seen as an efficient way to deal with the channel quality prediction, since it allows to reveal usually hidden relations among known and unknown channel quality measurements. In this article, we first overview state-of-the-art works leveraging the time, frequency, and spatial correlations among already known channel qualities and the channel(s), whose quality should be predicted. Furthermore, we outline a framework for a network correlation-based channel prediction enabling to determine the quality of unknown channel between any two communicating nodes by knowing only channels of these two nodes to reference nodes. Then, we demonstrate use-cases and application scenarios for all machine learning-based channel quality predictions. We also assess potential reduction in channel quality measurement-related overhead by all approaches to demonstrate their complementarity and capabilities to support low-overhead and energy-friendly massive deployment of devices in 6G mobile networks.
Název v anglickém jazyce
Machine Learning-Based Channel Quality Prediction in 6G Mobile Networks
Popis výsledku anglicky
Channel quality is an essential information for management of radio resources in mobile networks. To acquire the channel quality information, pilot (or reference) signals are commonly transmitted, measured, and reported to the network. However, the process of channel quality acquisition is both time and energy consuming. Moreover, the radio resources are competitively shared by the pilot signals and users' data. This motivates an employment of prediction-based approaches determining the channel quality at low cost to avoid over-consumption of resources for pilots. Machine learning is seen as an efficient way to deal with the channel quality prediction, since it allows to reveal usually hidden relations among known and unknown channel quality measurements. In this article, we first overview state-of-the-art works leveraging the time, frequency, and spatial correlations among already known channel qualities and the channel(s), whose quality should be predicted. Furthermore, we outline a framework for a network correlation-based channel prediction enabling to determine the quality of unknown channel between any two communicating nodes by knowing only channels of these two nodes to reference nodes. Then, we demonstrate use-cases and application scenarios for all machine learning-based channel quality predictions. We also assess potential reduction in channel quality measurement-related overhead by all approaches to demonstrate their complementarity and capabilities to support low-overhead and energy-friendly massive deployment of devices in 6G mobile networks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LTT20004" target="_blank" >LTT20004: Spolupráce s mezinárodním výzkumným centrem v oblasti digitálních komunikačních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Communications Magazine
ISSN
0163-6804
e-ISSN
1558-1896
Svazek periodika
61
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
106-112
Kód UT WoS článku
001055083700019
EID výsledku v databázi Scopus
2-s2.0-85166732755