CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368077" target="_blank" >RIV/68407700:21230/23:00368077 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2023.3315539" target="_blank" >https://doi.org/10.1109/LRA.2023.3315539</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2023.3315539" target="_blank" >10.1109/LRA.2023.3315539</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments
Popis výsledku v původním jazyce
In this paper, we propose a new method called Clustering Topological PRM (CTopPRM) for finding multiple topologically distinct paths in 3D cluttered environments. Finding such distinct paths, e.g., going around an obstacle from a different side, is useful in many applications. Among others, it is necessary for optimization-based trajectory planners where found trajectories are restricted to only a single topological class of a given path. Distinct paths can also be used to guide sampling-based motion planning and thus increase the effectiveness of planning in environments with narrow passages. Graph-based representation called roadmap is a common representation for path planning and also for finding multiple distinct paths. However, challenging environments with multiple narrow passages require a densely sampled roadmap to capture the connectivity of the environment. Searching such a dense roadmap for multiple paths is computationally too expensive. Therefore, the majority of existing methods construct only a sparse roadmap which, however, struggles to find all distinct paths in challenging environments. To this end, we propose the CTopPRM which creates a sparse graph by clustering an initially sampled dense roadmap. Such a reduced roadmap allows fast identification of topologically distinct paths captured in the dense roadmap. We show, that compared to the existing methods the CTopPRM improves the probability of finding all distinct paths by almost 20% in tested environments, during same run-time. The source code of our method is released as an open-source package.
Název v anglickém jazyce
CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments
Popis výsledku anglicky
In this paper, we propose a new method called Clustering Topological PRM (CTopPRM) for finding multiple topologically distinct paths in 3D cluttered environments. Finding such distinct paths, e.g., going around an obstacle from a different side, is useful in many applications. Among others, it is necessary for optimization-based trajectory planners where found trajectories are restricted to only a single topological class of a given path. Distinct paths can also be used to guide sampling-based motion planning and thus increase the effectiveness of planning in environments with narrow passages. Graph-based representation called roadmap is a common representation for path planning and also for finding multiple distinct paths. However, challenging environments with multiple narrow passages require a densely sampled roadmap to capture the connectivity of the environment. Searching such a dense roadmap for multiple paths is computationally too expensive. Therefore, the majority of existing methods construct only a sparse roadmap which, however, struggles to find all distinct paths in challenging environments. To this end, we propose the CTopPRM which creates a sparse graph by clustering an initially sampled dense roadmap. Such a reduced roadmap allows fast identification of topologically distinct paths captured in the dense roadmap. We show, that compared to the existing methods the CTopPRM improves the probability of finding all distinct paths by almost 20% in tested environments, during same run-time. The source code of our method is released as an open-source package.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-24425S" target="_blank" >GA22-24425S: Techniky plánování pohybu v úzkých prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
8
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
7336-7343
Kód UT WoS článku
001181344900001
EID výsledku v databázi Scopus
2-s2.0-85171592657