Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368077" target="_blank" >RIV/68407700:21230/23:00368077 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/LRA.2023.3315539" target="_blank" >https://doi.org/10.1109/LRA.2023.3315539</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2023.3315539" target="_blank" >10.1109/LRA.2023.3315539</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments

  • Popis výsledku v původním jazyce

    In this paper, we propose a new method called Clustering Topological PRM (CTopPRM) for finding multiple topologically distinct paths in 3D cluttered environments. Finding such distinct paths, e.g., going around an obstacle from a different side, is useful in many applications. Among others, it is necessary for optimization-based trajectory planners where found trajectories are restricted to only a single topological class of a given path. Distinct paths can also be used to guide sampling-based motion planning and thus increase the effectiveness of planning in environments with narrow passages. Graph-based representation called roadmap is a common representation for path planning and also for finding multiple distinct paths. However, challenging environments with multiple narrow passages require a densely sampled roadmap to capture the connectivity of the environment. Searching such a dense roadmap for multiple paths is computationally too expensive. Therefore, the majority of existing methods construct only a sparse roadmap which, however, struggles to find all distinct paths in challenging environments. To this end, we propose the CTopPRM which creates a sparse graph by clustering an initially sampled dense roadmap. Such a reduced roadmap allows fast identification of topologically distinct paths captured in the dense roadmap. We show, that compared to the existing methods the CTopPRM improves the probability of finding all distinct paths by almost 20% in tested environments, during same run-time. The source code of our method is released as an open-source package.

  • Název v anglickém jazyce

    CTopPRM: Clustering Topological PRM for Planning Multiple Distinct Paths in 3D Environments

  • Popis výsledku anglicky

    In this paper, we propose a new method called Clustering Topological PRM (CTopPRM) for finding multiple topologically distinct paths in 3D cluttered environments. Finding such distinct paths, e.g., going around an obstacle from a different side, is useful in many applications. Among others, it is necessary for optimization-based trajectory planners where found trajectories are restricted to only a single topological class of a given path. Distinct paths can also be used to guide sampling-based motion planning and thus increase the effectiveness of planning in environments with narrow passages. Graph-based representation called roadmap is a common representation for path planning and also for finding multiple distinct paths. However, challenging environments with multiple narrow passages require a densely sampled roadmap to capture the connectivity of the environment. Searching such a dense roadmap for multiple paths is computationally too expensive. Therefore, the majority of existing methods construct only a sparse roadmap which, however, struggles to find all distinct paths in challenging environments. To this end, we propose the CTopPRM which creates a sparse graph by clustering an initially sampled dense roadmap. Such a reduced roadmap allows fast identification of topologically distinct paths captured in the dense roadmap. We show, that compared to the existing methods the CTopPRM improves the probability of finding all distinct paths by almost 20% in tested environments, during same run-time. The source code of our method is released as an open-source package.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-24425S" target="_blank" >GA22-24425S: Techniky plánování pohybu v úzkých prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    7336-7343

  • Kód UT WoS článku

    001181344900001

  • EID výsledku v databázi Scopus

    2-s2.0-85171592657