The Non-Zero-Sum Game of Steganography in Heterogeneous Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369371" target="_blank" >RIV/68407700:21230/23:00369371 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TIFS.2023.3295945" target="_blank" >https://doi.org/10.1109/TIFS.2023.3295945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIFS.2023.3295945" target="_blank" >10.1109/TIFS.2023.3295945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Non-Zero-Sum Game of Steganography in Heterogeneous Environments
Popis výsledku v původním jazyce
The highly heterogeneous nature of images found in real-world environments, such as online sharing platforms, has been one of the long-standing obstacles to the transition of steganalysis techniques outside the laboratory. Recent advances in identifying the properties of images relevant to steganalysis as well as the effectiveness of deep neural networks on highly heterogeneous datasets have laid some groundwork for resolving this problem. Despite this progress, we argue that the way the game played between the steganographer and the steganalyst is currently modeled lacks some important features expected in a real-world environment: 1) the steganographer can adapt her cover source choice to the environment and/or to the steganalyst's classifier, 2) the distribution of cover sources in the environment impacts the optimal threshold for a given classifier, and 3) the steganalyst and steganographer have different goals, hence different utilities. We propose to take these facts into account using a two-player non-zero-sum game constrained by an environment composed of multiple cover sources. We then show how to convert this non-zero-sum game into an equivalent zero-sum game, allowing us to propose two methods to find Nash equilibria for this game: a standard method using the double oracle algorithm and a minimum regret method based on approximating a set of atomistic classifiers. Applying these methods to contemporary steganography and steganalysis in a realistic environment, we show that classifiers which do not adapt to the environment severely underperform when the steganographer is allowed to select into which cover source to embed.
Název v anglickém jazyce
The Non-Zero-Sum Game of Steganography in Heterogeneous Environments
Popis výsledku anglicky
The highly heterogeneous nature of images found in real-world environments, such as online sharing platforms, has been one of the long-standing obstacles to the transition of steganalysis techniques outside the laboratory. Recent advances in identifying the properties of images relevant to steganalysis as well as the effectiveness of deep neural networks on highly heterogeneous datasets have laid some groundwork for resolving this problem. Despite this progress, we argue that the way the game played between the steganographer and the steganalyst is currently modeled lacks some important features expected in a real-world environment: 1) the steganographer can adapt her cover source choice to the environment and/or to the steganalyst's classifier, 2) the distribution of cover sources in the environment impacts the optimal threshold for a given classifier, and 3) the steganalyst and steganographer have different goals, hence different utilities. We propose to take these facts into account using a two-player non-zero-sum game constrained by an environment composed of multiple cover sources. We then show how to convert this non-zero-sum game into an equivalent zero-sum game, allowing us to propose two methods to find Nash equilibria for this game: a standard method using the double oracle algorithm and a minimum regret method based on approximating a set of atomistic classifiers. Applying these methods to contemporary steganography and steganalysis in a realistic environment, we show that classifiers which do not adapt to the environment severely underperform when the steganographer is allowed to select into which cover source to embed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Information Forensics and Security
ISSN
1556-6013
e-ISSN
1556-6021
Svazek periodika
18
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
4436-4448
Kód UT WoS článku
001042073700003
EID výsledku v databázi Scopus
2-s2.0-85165245073