Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Non-Zero-Sum Game of Steganography in Heterogeneous Environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369371" target="_blank" >RIV/68407700:21230/23:00369371 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TIFS.2023.3295945" target="_blank" >https://doi.org/10.1109/TIFS.2023.3295945</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIFS.2023.3295945" target="_blank" >10.1109/TIFS.2023.3295945</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Non-Zero-Sum Game of Steganography in Heterogeneous Environments

  • Popis výsledku v původním jazyce

    The highly heterogeneous nature of images found in real-world environments, such as online sharing platforms, has been one of the long-standing obstacles to the transition of steganalysis techniques outside the laboratory. Recent advances in identifying the properties of images relevant to steganalysis as well as the effectiveness of deep neural networks on highly heterogeneous datasets have laid some groundwork for resolving this problem. Despite this progress, we argue that the way the game played between the steganographer and the steganalyst is currently modeled lacks some important features expected in a real-world environment: 1) the steganographer can adapt her cover source choice to the environment and/or to the steganalyst's classifier, 2) the distribution of cover sources in the environment impacts the optimal threshold for a given classifier, and 3) the steganalyst and steganographer have different goals, hence different utilities. We propose to take these facts into account using a two-player non-zero-sum game constrained by an environment composed of multiple cover sources. We then show how to convert this non-zero-sum game into an equivalent zero-sum game, allowing us to propose two methods to find Nash equilibria for this game: a standard method using the double oracle algorithm and a minimum regret method based on approximating a set of atomistic classifiers. Applying these methods to contemporary steganography and steganalysis in a realistic environment, we show that classifiers which do not adapt to the environment severely underperform when the steganographer is allowed to select into which cover source to embed.

  • Název v anglickém jazyce

    The Non-Zero-Sum Game of Steganography in Heterogeneous Environments

  • Popis výsledku anglicky

    The highly heterogeneous nature of images found in real-world environments, such as online sharing platforms, has been one of the long-standing obstacles to the transition of steganalysis techniques outside the laboratory. Recent advances in identifying the properties of images relevant to steganalysis as well as the effectiveness of deep neural networks on highly heterogeneous datasets have laid some groundwork for resolving this problem. Despite this progress, we argue that the way the game played between the steganographer and the steganalyst is currently modeled lacks some important features expected in a real-world environment: 1) the steganographer can adapt her cover source choice to the environment and/or to the steganalyst's classifier, 2) the distribution of cover sources in the environment impacts the optimal threshold for a given classifier, and 3) the steganalyst and steganographer have different goals, hence different utilities. We propose to take these facts into account using a two-player non-zero-sum game constrained by an environment composed of multiple cover sources. We then show how to convert this non-zero-sum game into an equivalent zero-sum game, allowing us to propose two methods to find Nash equilibria for this game: a standard method using the double oracle algorithm and a minimum regret method based on approximating a set of atomistic classifiers. Applying these methods to contemporary steganography and steganalysis in a realistic environment, we show that classifiers which do not adapt to the environment severely underperform when the steganographer is allowed to select into which cover source to embed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Information Forensics and Security

  • ISSN

    1556-6013

  • e-ISSN

    1556-6021

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    4436-4448

  • Kód UT WoS článku

    001042073700003

  • EID výsledku v databázi Scopus

    2-s2.0-85165245073