Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Guided Video Object Segmentation by Tracking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371648" target="_blank" >RIV/68407700:21230/23:00371648 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ev.fe.uni-lj.si/4-2023/Pelhan.pdf" target="_blank" >https://ev.fe.uni-lj.si/4-2023/Pelhan.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Guided Video Object Segmentation by Tracking

  • Popis výsledku v původním jazyce

    The paper presents Guided video object segmentation by tracking (gVOST) method for a human -in-the-loop video object segmentation which significantly reduces the manual annotation effort. The method is designed for an interactive object segmentation in a wide range of videos with a minimal user input. User to iteratively selects and annotates a small set of anchor frames by just a few clicks on the object border. The segmentation then is propagated to intermediate frames. Experiments show that gVOST performs well on diverse and challenging videos used in visual object tracking (VOT2020 dataset) where it achieves an IoU of 73% at only 5% of the user annotated frames. This shortens the annotation time by 98% compared to the brute force approach. gVOST outperforms the state-of-the-art interactive video object segmentation methods on the VOT2020 dataset and performs comparably on a less diverse DAVIS video object segmentation dataset.

  • Název v anglickém jazyce

    Guided Video Object Segmentation by Tracking

  • Popis výsledku anglicky

    The paper presents Guided video object segmentation by tracking (gVOST) method for a human -in-the-loop video object segmentation which significantly reduces the manual annotation effort. The method is designed for an interactive object segmentation in a wide range of videos with a minimal user input. User to iteratively selects and annotates a small set of anchor frames by just a few clicks on the object border. The segmentation then is propagated to intermediate frames. Experiments show that gVOST performs well on diverse and challenging videos used in visual object tracking (VOT2020 dataset) where it achieves an IoU of 73% at only 5% of the user annotated frames. This shortens the annotation time by 98% compared to the brute force approach. gVOST outperforms the state-of-the-art interactive video object segmentation methods on the VOT2020 dataset and performs comparably on a less diverse DAVIS video object segmentation dataset.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electrotechnical Review

  • ISSN

    0013-5852

  • e-ISSN

    2232-3236

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    SI - Slovinská republika

  • Počet stran výsledku

    12

  • Strana od-do

    147-158

  • Kód UT WoS článku

    001106156900002

  • EID výsledku v databázi Scopus

    2-s2.0-85180155048