Differentiable Collision Detection: a Randomized Smoothing Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371945" target="_blank" >RIV/68407700:21230/23:00371945 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00371945
Výsledek na webu
<a href="https://doi.org/10.1109/ICRA48891.2023.10160251" target="_blank" >https://doi.org/10.1109/ICRA48891.2023.10160251</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA48891.2023.10160251" target="_blank" >10.1109/ICRA48891.2023.10160251</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differentiable Collision Detection: a Randomized Smoothing Approach
Popis výsledku v původním jazyce
Collision detection is an important component of many robotics applications, from robot control to simulation, including motion planning and estimation. While the seminal works on the topic date back to the 80s, it is only recently that the question of properly differentiating collision detection has emerged as a central issue, thanks notably to the ongoing and various efforts made by the scientific community around the topic of differentiable physics. Yet, very few solutions have been suggested so far, and only with a strong assumption on the nature of the shapes involved. In this work, we introduce a generic and efficient approach to compute the derivatives of collision detection for any pair of convex shapes, by notably leveraging randomized smoothing techniques which have shown to be particularly adapted to capture the derivatives of non-smooth problems. This approach is implemented in the HPP-FCL and Pinocchio ecosystems, and evaluated on classic datasets and problems of the robotics literature, demonstrating few micro-second timings to compute informative derivatives directly exploitable by many real robotic applications, including differentiable simulation.
Název v anglickém jazyce
Differentiable Collision Detection: a Randomized Smoothing Approach
Popis výsledku anglicky
Collision detection is an important component of many robotics applications, from robot control to simulation, including motion planning and estimation. While the seminal works on the topic date back to the 80s, it is only recently that the question of properly differentiating collision detection has emerged as a central issue, thanks notably to the ongoing and various efforts made by the scientific community around the topic of differentiable physics. Yet, very few solutions have been suggested so far, and only with a strong assumption on the nature of the shapes involved. In this work, we introduce a generic and efficient approach to compute the derivatives of collision detection for any pair of convex shapes, by notably leveraging randomized smoothing techniques which have shown to be particularly adapted to capture the derivatives of non-smooth problems. This approach is implemented in the HPP-FCL and Pinocchio ecosystems, and evaluated on classic datasets and problems of the robotics literature, demonstrating few micro-second timings to compute informative derivatives directly exploitable by many real robotic applications, including differentiable simulation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Inteligentní strojové vnímání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Robotics and Automation
ISBN
979-8-3503-2365-8
ISSN
1050-4729
e-ISSN
2577-087X
Počet stran výsledku
7
Strana od-do
3240-3246
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Londýn
Datum konání akce
29. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001036713002089