Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336138" target="_blank" >RIV/68407700:21230/19:00336138 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1748-3190/ab1a9c" target="_blank" >https://doi.org/10.1088/1748-3190/ab1a9c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-3190/ab1a9c" target="_blank" >10.1088/1748-3190/ab1a9c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot
Popis výsledku v původním jazyce
In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for looming stimuli detection that can be found in visual pathways of insects, such as locusts. Although a superior performance of the LGMD in the detection of intercepting objects has been shown in many collision avoiding scenarios, its direct integration with motion control is an unexplored topic. In our work, we propose to utilize the LGMD neural network for visual interception detection with a central pattern generator (CPG) for locomotion control of a hexapod walking robot that are combined in the controller based on the long short-term memory (LSTM) recurrent neural network. Moreover, we propose self-supervised learning of the integrated controller to autonomously find a suitable setting of the system using a realistic robotic simulator. Thus, individual neural networks are trained in a simulation to enhance the performance of the controller that is then experimentally verified with a real hexapod walking robot in both collision and interception avoidance scenario and navigation in a cluttered environment.
Název v anglickém jazyce
Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot
Popis výsledku anglicky
In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for looming stimuli detection that can be found in visual pathways of insects, such as locusts. Although a superior performance of the LGMD in the detection of intercepting objects has been shown in many collision avoiding scenarios, its direct integration with motion control is an unexplored topic. In our work, we propose to utilize the LGMD neural network for visual interception detection with a central pattern generator (CPG) for locomotion control of a hexapod walking robot that are combined in the controller based on the long short-term memory (LSTM) recurrent neural network. Moreover, we propose self-supervised learning of the integrated controller to autonomously find a suitable setting of the system using a realistic robotic simulator. Thus, individual neural networks are trained in a simulation to enhance the performance of the controller that is then experimentally verified with a real hexapod walking robot in both collision and interception avoidance scenario and navigation in a cluttered environment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioinspiration & Biomimetics
ISSN
1748-3182
e-ISSN
1748-3190
Svazek periodika
14
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PT - Portugalská republika
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000509126400002
EID výsledku v databázi Scopus
2-s2.0-85065598130