Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing Neural Based Obstacle Avoidance with CPG Controlled Hexapod Walking Robot

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315461" target="_blank" >RIV/68407700:21230/17:00315461 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-1885/65.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/65.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing Neural Based Obstacle Avoidance with CPG Controlled Hexapod Walking Robot

  • Popis výsledku v původním jazyce

    Avoiding collisions with obstacles and intercepting objects based on the visual perception is a vital survival ability of any animal. In this work, we propose an extension of the biologically based collision avoidance approach to the detection of intercepting objects using the Lobula Giant Movement Detector (LGMD) connected directly to the locomotion control unit based on the Central Pattern Generator (CPG) of a hexapod walking robot. The proposed extension uses Recurrent Neural Network (RNN) to map the output of the LGMD on the input of the CPG to enhance collision avoiding behavior of the robot in cluttered environments. The presented results of the experimental verification of the proposed system with a real mobile hexapod crawling robot support the feasibility of the presented approach in collision avoidance scenarios.

  • Název v anglickém jazyce

    Enhancing Neural Based Obstacle Avoidance with CPG Controlled Hexapod Walking Robot

  • Popis výsledku anglicky

    Avoiding collisions with obstacles and intercepting objects based on the visual perception is a vital survival ability of any animal. In this work, we propose an extension of the biologically based collision avoidance approach to the detection of intercepting objects using the Lobula Giant Movement Detector (LGMD) connected directly to the locomotion control unit based on the Central Pattern Generator (CPG) of a hexapod walking robot. The proposed extension uses Recurrent Neural Network (RNN) to map the output of the LGMD on the input of the CPG to enhance collision avoiding behavior of the robot in cluttered environments. The presented results of the experimental verification of the proposed system with a real mobile hexapod crawling robot support the feasibility of the presented approach in collision avoidance scenarios.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ15-09600Y" target="_blank" >GJ15-09600Y: Adaptivní plánování v úlohách autonomního sběru dat v nestrukturovaném prostředí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 17th Conference on Information Technologies - Applications and Theory (ITAT 2017)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    65-70

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Martinské hole, Malá Fatra

  • Datum konání akce

    22. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku