Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00369211" target="_blank" >RIV/68407700:21230/24:00369211 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TRO.2023.3323938" target="_blank" >https://doi.org/10.1109/TRO.2023.3323938</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TRO.2023.3323938" target="_blank" >10.1109/TRO.2023.3323938</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
Popis výsledku v původním jazyce
This paper surveys recent progress and discusses future opportunities for Simultaneous Localization And Mapping (SLAM) in extreme underground environments. SLAM in subterranean environments, from tunnels, caves, and man-made underground structures on Earth, to lava tubes on Mars, is a key enabler for a range of applications, such as planetary exploration, search and rescue, disaster response, and automated mining, among others. SLAM in underground environments has recently received substantial attention, thanks to the DARPA Subterranean (SubT) Challenge , a global robotics competition aimed at assessing and pushing the state of the art in autonomous robotic exploration and mapping in complex underground environments. This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on LIDAR-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the “dirty details” behind the different SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.
Název v anglickém jazyce
Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
Popis výsledku anglicky
This paper surveys recent progress and discusses future opportunities for Simultaneous Localization And Mapping (SLAM) in extreme underground environments. SLAM in subterranean environments, from tunnels, caves, and man-made underground structures on Earth, to lava tubes on Mars, is a key enabler for a range of applications, such as planetary exploration, search and rescue, disaster response, and automated mining, among others. SLAM in underground environments has recently received substantial attention, thanks to the DARPA Subterranean (SubT) Challenge , a global robotics competition aimed at assessing and pushing the state of the art in autonomous robotic exploration and mapping in complex underground environments. This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on LIDAR-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the “dirty details” behind the different SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07517S" target="_blank" >GA23-07517S: Agilní roje létajících robotů se spolehlivým multimodálním vnímáním a estimací svého stavu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Robotics
ISSN
1552-3098
e-ISSN
1941-0468
Svazek periodika
40
Číslo periodika v rámci svazku
Oct
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
936-959
Kód UT WoS článku
001141488700007
EID výsledku v databázi Scopus
2-s2.0-85174837810