Form of contextuality predicting probabilistic equivalence between two sets of three mutually noncommuting observables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372193" target="_blank" >RIV/68407700:21230/24:00372193 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevA.109.022222" target="_blank" >https://doi.org/10.1103/PhysRevA.109.022222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.109.022222" target="_blank" >10.1103/PhysRevA.109.022222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Form of contextuality predicting probabilistic equivalence between two sets of three mutually noncommuting observables
Popis výsledku v původním jazyce
We introduce a contextual quantum system comprising mutually complementary observables organized into two or more collections of pseudocontexts with the same probability sums of outcomes. These pseudocontexts constitute non-orthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities. In other words, regardless of the initial state preparation, the total probability remains constant but may be distinct from unity. The measurement contextuality in this setup arises from the quantum realizations of the hypergraph, which adhere to a specific bound on the linear combination of probabilities. In contrast, classical realizations can surpass this bound. The violation of quantum bounds stems from the inability of classical ontological models, specifically the set theoretic representation of the hypergraph corresponding to the quantum observables’ collections, to adhere to and explain the observed statistics.
Název v anglickém jazyce
Form of contextuality predicting probabilistic equivalence between two sets of three mutually noncommuting observables
Popis výsledku anglicky
We introduce a contextual quantum system comprising mutually complementary observables organized into two or more collections of pseudocontexts with the same probability sums of outcomes. These pseudocontexts constitute non-orthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities. In other words, regardless of the initial state preparation, the total probability remains constant but may be distinct from unity. The measurement contextuality in this setup arises from the quantum realizations of the hypergraph, which adhere to a specific bound on the linear combination of probabilities. In contrast, classical realizations can surpass this bound. The violation of quantum bounds stems from the inability of classical ontological models, specifically the set theoretic representation of the hypergraph corresponding to the quantum observables’ collections, to adhere to and explain the observed statistics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
109
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001172355600008
EID výsledku v databázi Scopus
2-s2.0-85185887198