NASimEmu: Network Attack Simulator & Emulator for Training Agents Generalizing to Novel Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372772" target="_blank" >RIV/68407700:21230/24:00372772 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-54129-2_35" target="_blank" >https://doi.org/10.1007/978-3-031-54129-2_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-54129-2_35" target="_blank" >10.1007/978-3-031-54129-2_35</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NASimEmu: Network Attack Simulator & Emulator for Training Agents Generalizing to Novel Scenarios
Popis výsledku v původním jazyce
Current frameworks for training offensive penetration testing agents with deep reinforcement learning struggle to produce agents that perform well in real-world scenarios, due to the reality gap in simulation-based frameworks and the lack of scalability in emulation-based frameworks. Additionally, existing frameworks often use an unrealistic metric that measures the agents' performance on the training data. NASimEmu, a new framework introduced in this paper, addresses these issues by providing both a simulator and an emulator with a shared interface. This approach allows agents to be trained in simulation and deployed in the emulator, thus verifying the realism of the used abstraction. Our framework promotes the development of general agents that can transfer to novel scenarios unseen during their training. For the simulation part, we adopt an existing simulator NASim and enhance its realism. The emulator is implemented with industry-level tools, such as Vagrant, VirtualBox, and Metasploit. Experiments demonstrate that a simulation-trained agent can be deployed in emulation, and we show how to use the framework to train a general agent that transfers into novel, structurally different scenarios. NASimEmu is available as open-source.
Název v anglickém jazyce
NASimEmu: Network Attack Simulator & Emulator for Training Agents Generalizing to Novel Scenarios
Popis výsledku anglicky
Current frameworks for training offensive penetration testing agents with deep reinforcement learning struggle to produce agents that perform well in real-world scenarios, due to the reality gap in simulation-based frameworks and the lack of scalability in emulation-based frameworks. Additionally, existing frameworks often use an unrealistic metric that measures the agents' performance on the training data. NASimEmu, a new framework introduced in this paper, addresses these issues by providing both a simulator and an emulator with a shared interface. This approach allows agents to be trained in simulation and deployed in the emulator, thus verifying the realism of the used abstraction. Our framework promotes the development of general agents that can transfer to novel scenarios unseen during their training. For the simulation part, we adopt an existing simulator NASim and enhance its realism. The emulator is implemented with industry-level tools, such as Vagrant, VirtualBox, and Metasploit. Experiments demonstrate that a simulation-trained agent can be deployed in emulation, and we show how to use the framework to train a general agent that transfers into novel, structurally different scenarios. NASimEmu is available as open-source.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-54128-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
20
Strana od-do
589-608
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Hague
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001212380000025