Differential Game Strategies for Social Networks With Self-Interested Individuals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374541" target="_blank" >RIV/68407700:21230/24:00374541 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TCSS.2024.3350736" target="_blank" >https://doi.org/10.1109/TCSS.2024.3350736</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCSS.2024.3350736" target="_blank" >10.1109/TCSS.2024.3350736</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Game Strategies for Social Networks With Self-Interested Individuals
Popis výsledku v původním jazyce
A social network population engages in collective actions as a direct result of forming a particular opinion. The strategic interactions among the individuals acting independently and selfishly naturally portray a noncooperative game. Nash equilibrium allows for self-enforcing strategic interactions between selfish and self-interested individuals. This article presents a differential game approach to the opinion formation problem in social networks to investigate the evolution of opinions as a result of a Nash equilibrium. The opinion of each individual is described by a differential equation, which is the continuous-time Hegselmann-Krause model for opinion dynamics with a time delay in input. The objective of each individual is to seek optimal strategies for its own opinion evolution by minimizing an individual cost function. Two differential game problems emerge, one for a population that is not stubborn and another for a population that is stubborn. The open-loop Nash equilibrium actions and their associated opinion trajectories are derived for both differential games using Pontryagin's principle. Additionally, the receding horizon control scheme is used to practice feedback strategies where the information flow is restricted by fixed and complete social graphs, as well as the second neighborhood concept. The game strategies were executed on the well-known Zachary's Karate Club social network and a representative family opinion network. The resulting opinion trajectories associated with the game strategies showed consensus, polarization, and disagreement in final opinions.
Název v anglickém jazyce
Differential Game Strategies for Social Networks With Self-Interested Individuals
Popis výsledku anglicky
A social network population engages in collective actions as a direct result of forming a particular opinion. The strategic interactions among the individuals acting independently and selfishly naturally portray a noncooperative game. Nash equilibrium allows for self-enforcing strategic interactions between selfish and self-interested individuals. This article presents a differential game approach to the opinion formation problem in social networks to investigate the evolution of opinions as a result of a Nash equilibrium. The opinion of each individual is described by a differential equation, which is the continuous-time Hegselmann-Krause model for opinion dynamics with a time delay in input. The objective of each individual is to seek optimal strategies for its own opinion evolution by minimizing an individual cost function. Two differential game problems emerge, one for a population that is not stubborn and another for a population that is stubborn. The open-loop Nash equilibrium actions and their associated opinion trajectories are derived for both differential games using Pontryagin's principle. Additionally, the receding horizon control scheme is used to practice feedback strategies where the information flow is restricted by fixed and complete social graphs, as well as the second neighborhood concept. The game strategies were executed on the well-known Zachary's Karate Club social network and a representative family opinion network. The resulting opinion trajectories associated with the game strategies showed consensus, polarization, and disagreement in final opinions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07517S" target="_blank" >GA23-07517S: Agilní roje létajících robotů se spolehlivým multimodálním vnímáním a estimací svého stavu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Computational Social Systems
ISSN
2329-924X
e-ISSN
2329-924X
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
4426-4439
Kód UT WoS článku
001167335800001
EID výsledku v databázi Scopus
2-s2.0-85183984571