Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Computational Perspective on Neural-Symbolic Integration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375262" target="_blank" >RIV/68407700:21230/24:00375262 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3233/NAI-240672" target="_blank" >https://doi.org/10.3233/NAI-240672</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/NAI-240672" target="_blank" >10.3233/NAI-240672</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Computational Perspective on Neural-Symbolic Integration

  • Popis výsledku v původním jazyce

    Neural-Symbolic Integration (NSI) aims to marry the principles of symbolic AI techniques, such as logical reasoning, with the learning capabilities of neural networks. In recent years, many systems have been proposed to address this integration in a seemingly {{efficient}} manner. However, from the computational perspective, this is in principle impossible to do. Specifically, some of the core symbolic problems are provably hard, hence a general NSI system necessarily needs to adopt this computational complexity, too. Many NSI methods try to circumvent this downside by inconspicuously dropping parts of the symbolic capabilities while mapping the problems into static tensor representations in exchange for efficient deep learning acceleration. In this paper, we argue that the aim for a general NSI system, {properly} covering both the neural and symbolic paradigms, has important computational implications on the learning representations, the structure of the resulting computation graphs, and the underlying hardware and software stacks. Particularly, we explain how the currently prominent, tensor-based deep learning with static computation graphs is conceptually insufficient as a foundation for such general NSI, which we discuss in a wider context of established (statistical) relational and structured deep learning methods. Finally, we delve into the underlying hardware acceleration aspects and outline some promising computational directions toward fully expressive and efficient NSI.

  • Název v anglickém jazyce

    A Computational Perspective on Neural-Symbolic Integration

  • Popis výsledku anglicky

    Neural-Symbolic Integration (NSI) aims to marry the principles of symbolic AI techniques, such as logical reasoning, with the learning capabilities of neural networks. In recent years, many systems have been proposed to address this integration in a seemingly {{efficient}} manner. However, from the computational perspective, this is in principle impossible to do. Specifically, some of the core symbolic problems are provably hard, hence a general NSI system necessarily needs to adopt this computational complexity, too. Many NSI methods try to circumvent this downside by inconspicuously dropping parts of the symbolic capabilities while mapping the problems into static tensor representations in exchange for efficient deep learning acceleration. In this paper, we argue that the aim for a general NSI system, {properly} covering both the neural and symbolic paradigms, has important computational implications on the learning representations, the structure of the resulting computation graphs, and the underlying hardware and software stacks. Particularly, we explain how the currently prominent, tensor-based deep learning with static computation graphs is conceptually insufficient as a foundation for such general NSI, which we discuss in a wider context of established (statistical) relational and structured deep learning methods. Finally, we delve into the underlying hardware acceleration aspects and outline some promising computational directions toward fully expressive and efficient NSI.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA24-11664S" target="_blank" >GA24-11664S: Relační posilované učení pro akceleraci vědy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neurosymbolic Artificial Intelligence

  • ISSN

    2949-8732

  • e-ISSN

    2949-8732

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus