Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification with Costly Features in Hierarchical Deep Sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375997" target="_blank" >RIV/68407700:21230/24:00375997 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10994-024-06565-4" target="_blank" >https://doi.org/10.1007/s10994-024-06565-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10994-024-06565-4" target="_blank" >10.1007/s10994-024-06565-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification with Costly Features in Hierarchical Deep Sets

  • Popis výsledku v původním jazyce

    Classification with costly features (CwCF) is a classification problem that includes the cost of features in the optimization criteria. Individually for each sample, its features are sequentially acquired to maximize accuracy while minimizing the acquired features' cost. However, existing approaches can only process data that can be expressed as vectors of fixed length. In real life, the data often possesses rich and complex structure, which can be more precisely described with formats such as XML or JSON. The data is hierarchical and often contains nested lists of objects. In this work, we extend an existing deep reinforcement learning-based algorithm with hierarchical deep sets and hierarchical softmax, so that it can directly process this data. The extended method has greater control over which features it can acquire and, in experiments with seven datasets, we show that this leads to superior performance. To showcase the real usage of the new method, we apply it to a real-life problem of classifying malicious web domains, using an online service.

  • Název v anglickém jazyce

    Classification with Costly Features in Hierarchical Deep Sets

  • Popis výsledku anglicky

    Classification with costly features (CwCF) is a classification problem that includes the cost of features in the optimization criteria. Individually for each sample, its features are sequentially acquired to maximize accuracy while minimizing the acquired features' cost. However, existing approaches can only process data that can be expressed as vectors of fixed length. In real life, the data often possesses rich and complex structure, which can be more precisely described with formats such as XML or JSON. The data is hierarchical and often contains nested lists of objects. In this work, we extend an existing deep reinforcement learning-based algorithm with hierarchical deep sets and hierarchical softmax, so that it can directly process this data. The extended method has greater control over which features it can acquire and, in experiments with seven datasets, we show that this leads to superior performance. To showcase the real usage of the new method, we apply it to a real-life problem of classifying malicious web domains, using an online service.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Machine Learning

  • ISSN

    0885-6125

  • e-ISSN

    1573-0565

  • Svazek periodika

    113

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    36

  • Strana od-do

    4487-4522

  • Kód UT WoS článku

    001229224200001

  • EID výsledku v databázi Scopus

    2-s2.0-85193792574