Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376055" target="_blank" >RIV/68407700:21230/24:00376055 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/LRA.2024.3421193" target="_blank" >https://doi.org/10.1109/LRA.2024.3421193</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2024.3421193" target="_blank" >10.1109/LRA.2024.3421193</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn

  • Popis výsledku v původním jazyce

    Nowadays, robots can operate in environments which are not tailored for them. This allows their deployments in changing and human-populated environments, which recent advances in machine learning methods enabled. The efficiency of these methods is largely determined by the quality of their training data. An up-to-date and well-balanced training dataset is paramount for achieving robust robot operation. To achieve long-term operation, the robot has to deal with perpetual environmental changes, forcing it to keep its models up-to-date. We present an exploration method allowing a mobile robot to gather high-quality data to update its models both while performing its duties and when idle, maximizing effectivity. The robot evaluates the quality of the data gathered in the past and based on that, it creates preferences which influence how often these locations are visited. This exploration method was integrated with a self-supervised visual teach-and-repeat pipeline. We show the precision and robustness of visual-based navigation to improve when using machine-learned models trained by our exploration method. Our research resulted in a robotic navigation system that can not only annotate its training data but also ensure that its training dataset is balanced and up-to-date. The codes, datasets, trained models and examples for our experiments can be found online for better reproducibility at .

  • Název v anglickém jazyce

    Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn

  • Popis výsledku anglicky

    Nowadays, robots can operate in environments which are not tailored for them. This allows their deployments in changing and human-populated environments, which recent advances in machine learning methods enabled. The efficiency of these methods is largely determined by the quality of their training data. An up-to-date and well-balanced training dataset is paramount for achieving robust robot operation. To achieve long-term operation, the robot has to deal with perpetual environmental changes, forcing it to keep its models up-to-date. We present an exploration method allowing a mobile robot to gather high-quality data to update its models both while performing its duties and when idle, maximizing effectivity. The robot evaluates the quality of the data gathered in the past and based on that, it creates preferences which influence how often these locations are visited. This exploration method was integrated with a self-supervised visual teach-and-repeat pipeline. We show the precision and robustness of visual-based navigation to improve when using machine-learned models trained by our exploration method. Our research resulted in a robotic navigation system that can not only annotate its training data but also ensure that its training dataset is balanced and up-to-date. The codes, datasets, trained models and examples for our experiments can be found online for better reproducibility at .

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    10042-10049

  • Kód UT WoS článku

    001329045100010

  • EID výsledku v databázi Scopus

    2-s2.0-85197555308