Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376055" target="_blank" >RIV/68407700:21230/24:00376055 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2024.3421193" target="_blank" >https://doi.org/10.1109/LRA.2024.3421193</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2024.3421193" target="_blank" >10.1109/LRA.2024.3421193</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn
Popis výsledku v původním jazyce
Nowadays, robots can operate in environments which are not tailored for them. This allows their deployments in changing and human-populated environments, which recent advances in machine learning methods enabled. The efficiency of these methods is largely determined by the quality of their training data. An up-to-date and well-balanced training dataset is paramount for achieving robust robot operation. To achieve long-term operation, the robot has to deal with perpetual environmental changes, forcing it to keep its models up-to-date. We present an exploration method allowing a mobile robot to gather high-quality data to update its models both while performing its duties and when idle, maximizing effectivity. The robot evaluates the quality of the data gathered in the past and based on that, it creates preferences which influence how often these locations are visited. This exploration method was integrated with a self-supervised visual teach-and-repeat pipeline. We show the precision and robustness of visual-based navigation to improve when using machine-learned models trained by our exploration method. Our research resulted in a robotic navigation system that can not only annotate its training data but also ensure that its training dataset is balanced and up-to-date. The codes, datasets, trained models and examples for our experiments can be found online for better reproducibility at .
Název v anglickém jazyce
Predictive Data Acquisition for Lifelong Visual Teach, Repeat and Learn
Popis výsledku anglicky
Nowadays, robots can operate in environments which are not tailored for them. This allows their deployments in changing and human-populated environments, which recent advances in machine learning methods enabled. The efficiency of these methods is largely determined by the quality of their training data. An up-to-date and well-balanced training dataset is paramount for achieving robust robot operation. To achieve long-term operation, the robot has to deal with perpetual environmental changes, forcing it to keep its models up-to-date. We present an exploration method allowing a mobile robot to gather high-quality data to update its models both while performing its duties and when idle, maximizing effectivity. The robot evaluates the quality of the data gathered in the past and based on that, it creates preferences which influence how often these locations are visited. This exploration method was integrated with a self-supervised visual teach-and-repeat pipeline. We show the precision and robustness of visual-based navigation to improve when using machine-learned models trained by our exploration method. Our research resulted in a robotic navigation system that can not only annotate its training data but also ensure that its training dataset is balanced and up-to-date. The codes, datasets, trained models and examples for our experiments can be found online for better reproducibility at .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
10042-10049
Kód UT WoS článku
001329045100010
EID výsledku v databázi Scopus
2-s2.0-85197555308