SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376365" target="_blank" >RIV/68407700:21230/24:00376365 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00376365
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2024.3374649" target="_blank" >https://doi.org/10.1109/ACCESS.2024.3374649</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3374649" target="_blank" >10.1109/ACCESS.2024.3374649</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture
Popis výsledku v původním jazyce
Many real-world systems can be naturally described by mathematical formulas. The task of automatically constructing formulas to fit observed data is called symbolic regression. Evolutionary methods such as genetic programming have been commonly used to solve symbolic regression tasks, but they have significant drawbacks, such as high computational complexity. Recently, neural networks have been applied to symbolic regression, among which the transformer-based methods seem to be most promising. After training a transformer on a large number of formulas, the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the symbols and the constants simultaneously. This helps to generate formulas that fit the data more accurately. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the model accuracy. We show on several benchmarks that SymFormer outperforms state-of-the-art methods while having faster inference.
Název v anglickém jazyce
SymFormer: End-to-End Symbolic Regression Using Transformer-Based Architecture
Popis výsledku anglicky
Many real-world systems can be naturally described by mathematical formulas. The task of automatically constructing formulas to fit observed data is called symbolic regression. Evolutionary methods such as genetic programming have been commonly used to solve symbolic regression tasks, but they have significant drawbacks, such as high computational complexity. Recently, neural networks have been applied to symbolic regression, among which the transformer-based methods seem to be most promising. After training a transformer on a large number of formulas, the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the symbols and the constants simultaneously. This helps to generate formulas that fit the data more accurately. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the model accuracy. We show on several benchmarks that SymFormer outperforms state-of-the-art methods while having faster inference.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
37840-37849
Kód UT WoS článku
001189819400001
EID výsledku v databázi Scopus
2-s2.0-85187357292