Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Symbolic regression in dynamic scenarios with gradually changing targets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332200" target="_blank" >RIV/68407700:21230/19:00332200 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/19:00332200

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.asoc.2019.105621" target="_blank" >https://doi.org/10.1016/j.asoc.2019.105621</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2019.105621" target="_blank" >10.1016/j.asoc.2019.105621</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Symbolic regression in dynamic scenarios with gradually changing targets

  • Popis výsledku v původním jazyce

    Symbolic regression is a machine learning task: given a training dataset with features and targets, find a symbolic function that best predicts the target given the features. This paper concentrates on dynamic regression tasks, i.e. tasks where the goal changes during the model fitting process. Our study is motivated by dynamic regression tasks originating in the domain of reinforcement learning: we study four dynamic symbolic regression problems related to well-known reinforcement learning benchmarks, with data generated from the standard Value Iteration algorithm. We first show that in these problems the target function changes gradually, with no abrupt changes. Even these gradual changes, however, are a challenge to traditional Genetic Programming-based Symbolic Regression algorithms because they rely only on expression manipulation and selection. To address this challenge, we present an enhancement to such algorithms suitable for dynamic scenarios with gradual changes, namely the recently introduced type of leaf nodes called Linear Combination of Features. This type of leaf node, aided by the error backpropagation technique known from artificial neural networks, enables the algorithm to better fit the data by utilizing the error gradient to its advantage rather than searching blindly using only the fitness values. This setup is compared with a baseline of the core algorithm without any of our improvements and also with a classic evolutionary dynamic optimization technique: hypermutation. The results show that the proposed modifications greatly improve the algorithm ability to track a gradually changing target.

  • Název v anglickém jazyce

    Symbolic regression in dynamic scenarios with gradually changing targets

  • Popis výsledku anglicky

    Symbolic regression is a machine learning task: given a training dataset with features and targets, find a symbolic function that best predicts the target given the features. This paper concentrates on dynamic regression tasks, i.e. tasks where the goal changes during the model fitting process. Our study is motivated by dynamic regression tasks originating in the domain of reinforcement learning: we study four dynamic symbolic regression problems related to well-known reinforcement learning benchmarks, with data generated from the standard Value Iteration algorithm. We first show that in these problems the target function changes gradually, with no abrupt changes. Even these gradual changes, however, are a challenge to traditional Genetic Programming-based Symbolic Regression algorithms because they rely only on expression manipulation and selection. To address this challenge, we present an enhancement to such algorithms suitable for dynamic scenarios with gradual changes, namely the recently introduced type of leaf nodes called Linear Combination of Features. This type of leaf node, aided by the error backpropagation technique known from artificial neural networks, enables the algorithm to better fit the data by utilizing the error gradient to its advantage rather than searching blindly using only the fitness values. This setup is compared with a baseline of the core algorithm without any of our improvements and also with a classic evolutionary dynamic optimization technique: hypermutation. The results show that the proposed modifications greatly improve the algorithm ability to track a gradually changing target.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolická regrese pro posilované učení ve spojitých prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    2019

  • Číslo periodika v rámci svazku

    83

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000488100900015

  • EID výsledku v databázi Scopus

    2-s2.0-85068820262