Continual Depth-limited Responses for Computing Counter-strategies in Sequential Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377050" target="_blank" >RIV/68407700:21230/24:00377050 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2393.pdf" target="_blank" >https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2393.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Continual Depth-limited Responses for Computing Counter-strategies in Sequential Games
Popis výsledku v původním jazyce
In zero-sum games, the optimal strategy is well-defined by the Nash equilibrium. However, it is overly conservative when playing against suboptimal opponents and it can not exploit their weaknesses. Limited look-ahead game solving in imperfect-information games allows superhuman play in massive real-world games such as Poker, Liar's Dice, and Scotland Yard. However, since they approximate Nash equilibrium, they tend to only win slightly against weak opponents. We propose theoretically sound methods combining limited look-ahead solving with an opponent model, in order to 1) approximate a best response in large games or 2) compute a robust response with control over the robustness of the response. Both methods can compute the response in real time to previously unseen strategies. We present theoretical guarantees of our methods. We show that existing robust response methods do not work combined with limited look-ahead solving of the shelf, and we propose a novel solution for the issue. Our algorithm performs significantly better than multiple baselines in smaller games and outperforms state-of-the-art methods against SlumBot.
Název v anglickém jazyce
Continual Depth-limited Responses for Computing Counter-strategies in Sequential Games
Popis výsledku anglicky
In zero-sum games, the optimal strategy is well-defined by the Nash equilibrium. However, it is overly conservative when playing against suboptimal opponents and it can not exploit their weaknesses. Limited look-ahead game solving in imperfect-information games allows superhuman play in massive real-world games such as Poker, Liar's Dice, and Scotland Yard. However, since they approximate Nash equilibrium, they tend to only win slightly against weak opponents. We propose theoretically sound methods combining limited look-ahead solving with an opponent model, in order to 1) approximate a best response in large games or 2) compute a robust response with control over the robustness of the response. Both methods can compute the response in real time to previously unseen strategies. We present theoretical guarantees of our methods. We show that existing robust response methods do not work combined with limited look-ahead solving of the shelf, and we propose a novel solution for the issue. Our algorithm performs significantly better than multiple baselines in smaller games and outperforms state-of-the-art methods against SlumBot.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems
ISBN
—
ISSN
1548-8403
e-ISSN
1558-2914
Počet stran výsledku
3
Strana od-do
2393-2395
Název nakladatele
IFAAMAS
Místo vydání
County of Richland
Místo konání akce
Auckland
Datum konání akce
6. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—