Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377221" target="_blank" >RIV/68407700:21230/24:00377221 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/adma.202401180" target="_blank" >https://doi.org/10.1002/adma.202401180</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adma.202401180" target="_blank" >10.1002/adma.202401180</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films

  • Popis výsledku v původním jazyce

    Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect. The properties of noncollinear antiferromagnets are highly sensitive to strain, including large local strain fields generated by dislocations. The influence of these on the global magnetization and transport properties is examined, finding that they enhance the magnetization but are deleterious to intrinsic properties important for application. This analysis is timely as efforts are made to integrate these materials into multilayer devices. image

  • Název v anglickém jazyce

    The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films

  • Popis výsledku anglicky

    Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect. The properties of noncollinear antiferromagnets are highly sensitive to strain, including large local strain fields generated by dislocations. The influence of these on the global magnetization and transport properties is examined, finding that they enhance the magnetization but are deleterious to intrinsic properties important for application. This analysis is timely as efforts are made to integrate these materials into multilayer devices. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-06285S" target="_blank" >GA23-06285S: Nové iontové krystaly a jejich povrchy jako klíč k fotovoltaickým materiálům budoucnosti (NicePV)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Materials

  • ISSN

    0935-9648

  • e-ISSN

    1521-4095

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    27

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001207581800001

  • EID výsledku v databázi Scopus

    2-s2.0-85191097420