The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377221" target="_blank" >RIV/68407700:21230/24:00377221 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/adma.202401180" target="_blank" >https://doi.org/10.1002/adma.202401180</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202401180" target="_blank" >10.1002/adma.202401180</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films
Popis výsledku v původním jazyce
Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect. The properties of noncollinear antiferromagnets are highly sensitive to strain, including large local strain fields generated by dislocations. The influence of these on the global magnetization and transport properties is examined, finding that they enhance the magnetization but are deleterious to intrinsic properties important for application. This analysis is timely as efforts are made to integrate these materials into multilayer devices. image
Název v anglickém jazyce
The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films
Popis výsledku anglicky
Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect. The properties of noncollinear antiferromagnets are highly sensitive to strain, including large local strain fields generated by dislocations. The influence of these on the global magnetization and transport properties is examined, finding that they enhance the magnetization but are deleterious to intrinsic properties important for application. This analysis is timely as efforts are made to integrate these materials into multilayer devices. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06285S" target="_blank" >GA23-06285S: Nové iontové krystaly a jejich povrchy jako klíč k fotovoltaickým materiálům budoucnosti (NicePV)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
36
Číslo periodika v rámci svazku
27
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001207581800001
EID výsledku v databázi Scopus
2-s2.0-85191097420