SnAgCu Solder Joint Microstructure Evolution During Thermal Aging: Influence of Flux
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377313" target="_blank" >RIV/68407700:21230/24:00377313 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/adem.202401366" target="_blank" >https://doi.org/10.1002/adem.202401366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adem.202401366" target="_blank" >10.1002/adem.202401366</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SnAgCu Solder Joint Microstructure Evolution During Thermal Aging: Influence of Flux
Popis výsledku v původním jazyce
An intermetallic layer (IML) between the solder alloy and the soldered surface affects the mechanical and electrical performance of the resulting joints. Numerous studies have explored the possibilities of influencing the IML to achieve more reliable interconnections. However, the type and composition of the used flux, crucial for the proper creation of solder joints, is rarely included as a possible influencing factor. In this article, a comprehensive study on the interfacial microstructure evolution of lead-free SnAgCu solder joints, accounting for the flux type and the temperature of the preheating phase of reflow soldering, where the flux contained in the solder paste becomes active, is presented. In the results, it is shown that the IML of as-reflowed and thermally aged solder joints depends significantly on the flux. The IML activation energy is 57% higher for rosin-based low-activity (ROL)0 flux compared to ROL1 flux. The ROL0 flux, containing fewer active components, also outperforms the ROL1 flux in both the mechanical and electrical properties of the joints. Furthermore, the temperature profiles also show slight differences in measured properties, with the fluxes responding differently to changes in preheating temperature. In the presented results, importance of the used flux on solder joint microstructure is demonstrated.
Název v anglickém jazyce
SnAgCu Solder Joint Microstructure Evolution During Thermal Aging: Influence of Flux
Popis výsledku anglicky
An intermetallic layer (IML) between the solder alloy and the soldered surface affects the mechanical and electrical performance of the resulting joints. Numerous studies have explored the possibilities of influencing the IML to achieve more reliable interconnections. However, the type and composition of the used flux, crucial for the proper creation of solder joints, is rarely included as a possible influencing factor. In this article, a comprehensive study on the interfacial microstructure evolution of lead-free SnAgCu solder joints, accounting for the flux type and the temperature of the preheating phase of reflow soldering, where the flux contained in the solder paste becomes active, is presented. In the results, it is shown that the IML of as-reflowed and thermally aged solder joints depends significantly on the flux. The IML activation energy is 57% higher for rosin-based low-activity (ROL)0 flux compared to ROL1 flux. The ROL0 flux, containing fewer active components, also outperforms the ROL1 flux in both the mechanical and electrical properties of the joints. Furthermore, the temperature profiles also show slight differences in measured properties, with the fluxes responding differently to changes in preheating temperature. In the presented results, importance of the used flux on solder joint microstructure is demonstrated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Engineering Materials
ISSN
1438-1656
e-ISSN
1527-2648
Svazek periodika
26
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001320133300001
EID výsledku v databázi Scopus
2-s2.0-85204688403