Alquist 5.0: Dialogue Trees Meet Generative Models, a Novel Approach for Enhancing SocialBot Conversations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377432" target="_blank" >RIV/68407700:21230/24:00377432 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00377432
Výsledek na webu
<a href="https://doi.org/10.3390/fi16090344" target="_blank" >https://doi.org/10.3390/fi16090344</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/fi16090344" target="_blank" >10.3390/fi16090344</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Alquist 5.0: Dialogue Trees Meet Generative Models, a Novel Approach for Enhancing SocialBot Conversations
Popis výsledku v původním jazyce
This article introduces Alquist 5.0, our SocialBot that was designed for the Alexa Prize SocialBot Grand Challenge 5. Building upon previous iterations, we present the integration of our novel neural response generator (NRG) Barista within a hybrid architecture that combines traditional predefined dialogues with advanced neural response generation. We provide a comprehensive analysis of the current state-of-the-art NRGs and large language models (LLMs), leveraging these insights to enhance Barista's capabilities. A key focus of our development was in ensuring the safety of our chatbot and implementing robust measures to prevent profanity and inappropriate content. Additionally, we incorporated a new search engine to improve information retrieval and response accuracy. Expanding the capabilities of our system, we designed Alquist 5.0 to accommodate multimodal devices, utilizing APL templates enriched with custom features to deliver an outstanding conversational experience complemented by an excellent user interface. This paper offers detailed insights into the development of Alquist 5.0, which effectively addresses evolving user demands while preserving its empathetic and knowledgeable conversational prowess across a wide range of topics.
Název v anglickém jazyce
Alquist 5.0: Dialogue Trees Meet Generative Models, a Novel Approach for Enhancing SocialBot Conversations
Popis výsledku anglicky
This article introduces Alquist 5.0, our SocialBot that was designed for the Alexa Prize SocialBot Grand Challenge 5. Building upon previous iterations, we present the integration of our novel neural response generator (NRG) Barista within a hybrid architecture that combines traditional predefined dialogues with advanced neural response generation. We provide a comprehensive analysis of the current state-of-the-art NRGs and large language models (LLMs), leveraging these insights to enhance Barista's capabilities. A key focus of our development was in ensuring the safety of our chatbot and implementing robust measures to prevent profanity and inappropriate content. Additionally, we incorporated a new search engine to improve information retrieval and response accuracy. Expanding the capabilities of our system, we designed Alquist 5.0 to accommodate multimodal devices, utilizing APL templates enriched with custom features to deliver an outstanding conversational experience complemented by an excellent user interface. This paper offers detailed insights into the development of Alquist 5.0, which effectively addresses evolving user demands while preserving its empathetic and knowledgeable conversational prowess across a wide range of topics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Internet
ISSN
1999-5903
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
001323427600001
EID výsledku v databázi Scopus
2-s2.0-85205248570