Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377469" target="_blank" >RIV/68407700:21230/24:00377469 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00377469
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijhydene.2024.09.345" target="_blank" >https://doi.org/10.1016/j.ijhydene.2024.09.345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2024.09.345" target="_blank" >10.1016/j.ijhydene.2024.09.345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading
Popis výsledku v původním jazyce
This paper examines the electrification of transportation as a response to environmental challenges caused by fossil fuels, exploring the potential of battery electric vehicles and hydrogen fuel cell vehicles as alternative solutions. However, a significant barrier to their widespread adoption is the limited availability of charging infrastructure. Therefore, this study proposes the development of comprehensive charging stations capable of accommodating both battery and hydrogen vehicles to address this challenge. The energy is purchased from the day-ahead and intraday auction-based electricity markets, where the electricity price is subject to uncertainty. Therefore, a two-stage stochastic programming model is formulated while the price scenarios are generated utilizing a k-means clustering algorithm. Given the complexity of the proposed model, an efficient solution approach is developed through the hybridization of the Benders decomposition algorithm and stochastic dual dynamic programming. In the Benders master problem, day-ahead bidding variables are determined, whereas the Benders sub-problem addresses intraday bidding and charging station scheduling variables, employing stochastic dual dynamic programming to tackle its intractability. Additionally, we transform the mixed integer linear program model of the second stage problem into a linear program, confirming its validity through KKT conditions. Our model provides practical insights for making informed decisions in electricity markets based on sequential auctions. While the bidding curves submitted to the day-ahead market remain unaffected by scenarios, those submitted to the intra-day market show dependence on fluctuations in day-ahead market prices. 2024 Hydrogen Energy Publications LLC.
Název v anglickém jazyce
Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading
Popis výsledku anglicky
This paper examines the electrification of transportation as a response to environmental challenges caused by fossil fuels, exploring the potential of battery electric vehicles and hydrogen fuel cell vehicles as alternative solutions. However, a significant barrier to their widespread adoption is the limited availability of charging infrastructure. Therefore, this study proposes the development of comprehensive charging stations capable of accommodating both battery and hydrogen vehicles to address this challenge. The energy is purchased from the day-ahead and intraday auction-based electricity markets, where the electricity price is subject to uncertainty. Therefore, a two-stage stochastic programming model is formulated while the price scenarios are generated utilizing a k-means clustering algorithm. Given the complexity of the proposed model, an efficient solution approach is developed through the hybridization of the Benders decomposition algorithm and stochastic dual dynamic programming. In the Benders master problem, day-ahead bidding variables are determined, whereas the Benders sub-problem addresses intraday bidding and charging station scheduling variables, employing stochastic dual dynamic programming to tackle its intractability. Additionally, we transform the mixed integer linear program model of the second stage problem into a linear program, confirming its validity through KKT conditions. Our model provides practical insights for making informed decisions in electricity markets based on sequential auctions. While the bidding curves submitted to the day-ahead market remain unaffected by scenarios, those submitted to the intra-day market show dependence on fluctuations in day-ahead market prices. 2024 Hydrogen Energy Publications LLC.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hydrogen Energy
ISSN
0360-3199
e-ISSN
1879-3487
Svazek periodika
89
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
1060-1074
Kód UT WoS článku
001331440700001
EID výsledku v databázi Scopus
2-s2.0-85205337567