Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377469" target="_blank" >RIV/68407700:21230/24:00377469 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/24:00377469

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ijhydene.2024.09.345" target="_blank" >https://doi.org/10.1016/j.ijhydene.2024.09.345</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijhydene.2024.09.345" target="_blank" >10.1016/j.ijhydene.2024.09.345</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading

  • Popis výsledku v původním jazyce

    This paper examines the electrification of transportation as a response to environmental challenges caused by fossil fuels, exploring the potential of battery electric vehicles and hydrogen fuel cell vehicles as alternative solutions. However, a significant barrier to their widespread adoption is the limited availability of charging infrastructure. Therefore, this study proposes the development of comprehensive charging stations capable of accommodating both battery and hydrogen vehicles to address this challenge. The energy is purchased from the day-ahead and intraday auction-based electricity markets, where the electricity price is subject to uncertainty. Therefore, a two-stage stochastic programming model is formulated while the price scenarios are generated utilizing a k-means clustering algorithm. Given the complexity of the proposed model, an efficient solution approach is developed through the hybridization of the Benders decomposition algorithm and stochastic dual dynamic programming. In the Benders master problem, day-ahead bidding variables are determined, whereas the Benders sub-problem addresses intraday bidding and charging station scheduling variables, employing stochastic dual dynamic programming to tackle its intractability. Additionally, we transform the mixed integer linear program model of the second stage problem into a linear program, confirming its validity through KKT conditions. Our model provides practical insights for making informed decisions in electricity markets based on sequential auctions. While the bidding curves submitted to the day-ahead market remain unaffected by scenarios, those submitted to the intra-day market show dependence on fluctuations in day-ahead market prices. 2024 Hydrogen Energy Publications LLC.

  • Název v anglickém jazyce

    Electrification of transportation: A hybrid Benders/SDDP algorithm for optimal charging station trading

  • Popis výsledku anglicky

    This paper examines the electrification of transportation as a response to environmental challenges caused by fossil fuels, exploring the potential of battery electric vehicles and hydrogen fuel cell vehicles as alternative solutions. However, a significant barrier to their widespread adoption is the limited availability of charging infrastructure. Therefore, this study proposes the development of comprehensive charging stations capable of accommodating both battery and hydrogen vehicles to address this challenge. The energy is purchased from the day-ahead and intraday auction-based electricity markets, where the electricity price is subject to uncertainty. Therefore, a two-stage stochastic programming model is formulated while the price scenarios are generated utilizing a k-means clustering algorithm. Given the complexity of the proposed model, an efficient solution approach is developed through the hybridization of the Benders decomposition algorithm and stochastic dual dynamic programming. In the Benders master problem, day-ahead bidding variables are determined, whereas the Benders sub-problem addresses intraday bidding and charging station scheduling variables, employing stochastic dual dynamic programming to tackle its intractability. Additionally, we transform the mixed integer linear program model of the second stage problem into a linear program, confirming its validity through KKT conditions. Our model provides practical insights for making informed decisions in electricity markets based on sequential auctions. While the bidding curves submitted to the day-ahead market remain unaffected by scenarios, those submitted to the intra-day market show dependence on fluctuations in day-ahead market prices. 2024 Hydrogen Energy Publications LLC.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Hydrogen Energy

  • ISSN

    0360-3199

  • e-ISSN

    1879-3487

  • Svazek periodika

    89

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    1060-1074

  • Kód UT WoS článku

    001331440700001

  • EID výsledku v databázi Scopus

    2-s2.0-85205337567