Tram Localization using Soft-Constrained Iterated Kalman Filter with Optimal Step Size Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377489" target="_blank" >RIV/68407700:21230/24:00377489 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/MFI62651.2024.10705771" target="_blank" >http://dx.doi.org/10.1109/MFI62651.2024.10705771</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MFI62651.2024.10705771" target="_blank" >10.1109/MFI62651.2024.10705771</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tram Localization using Soft-Constrained Iterated Kalman Filter with Optimal Step Size Control
Popis výsledku v původním jazyce
The paper describes a way to incorporate soft constraints to iterated Kalman filter and its application to tram localization. The localization task is motivated by a suboptimal performance of a currently used hard-constrained localization solution and is then tackled by introducing a framework allowing to insert various constraints into the Kalman filter scheme. The filtering (data update) step of the iterated Kalman filter is interpreted as an instance of a non-linear least squares problem for which the step size in each iteration can be chosen in the optimal manner, improving the overall state estimate convergence. The described estimation framework is showcased on real-life data and compared against a hardconstrained Kalman filter scheme which resembles the one originally motivating the task. While the presented solution does not provide a substantial quantifiable improvement in quality of estimate in this particular case, it is much more versatile and does not require prior specific choice of tramway tracks. Finally, the introduced scheme is employed on the motivating example with a discussion of possible further enhancements.
Název v anglickém jazyce
Tram Localization using Soft-Constrained Iterated Kalman Filter with Optimal Step Size Control
Popis výsledku anglicky
The paper describes a way to incorporate soft constraints to iterated Kalman filter and its application to tram localization. The localization task is motivated by a suboptimal performance of a currently used hard-constrained localization solution and is then tackled by introducing a framework allowing to insert various constraints into the Kalman filter scheme. The filtering (data update) step of the iterated Kalman filter is interpreted as an instance of a non-linear least squares problem for which the step size in each iteration can be chosen in the optimal manner, improving the overall state estimate convergence. The described estimation framework is showcased on real-life data and compared against a hardconstrained Kalman filter scheme which resembles the one originally motivating the task. While the presented solution does not provide a substantial quantifiable improvement in quality of estimate in this particular case, it is much more versatile and does not require prior specific choice of tramway tracks. Finally, the introduced scheme is employed on the motivating example with a discussion of possible further enhancements.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/CK03000269" target="_blank" >CK03000269: Pokročilé metody zpracování palubních dat v systémech V2X</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)
ISBN
979-8-3503-6803-1
ISSN
2835-947X
e-ISSN
2767-9357
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Plzeň
Datum konání akce
4. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—