InA: Inhibition Adaption on pre-trained language models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377574" target="_blank" >RIV/68407700:21230/24:00377574 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.neunet.2024.106410" target="_blank" >https://doi.org/10.1016/j.neunet.2024.106410</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2024.106410" target="_blank" >10.1016/j.neunet.2024.106410</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
InA: Inhibition Adaption on pre-trained language models
Popis výsledku v původním jazyce
Fine-tuning pre-trained language models (LMs) may not always be the most practical approach for downstream tasks. While adaptation fine-tuning methods have shown promising results, a clearer explanation of their mechanisms and further inhibition of the transmission of information is needed. To address this, we propose an Inhibition Adaptation (InA) fine-tuning method that aims to reduce the number of added tunable weights and appropriately reweight knowledge derived from pre-trained LMs. The InA method involves (1) inserting a small trainable vector into each Transformer attention architecture and (2) setting a threshold to directly eliminate irrelevant knowledge. This approach draws inspiration from the shunting inhibition, which allows the inhibition of specific neurons to gate other functional neurons. With the inhibition mechanism, InA achieves competitive or even superior performance compared to other fine-tuning methods on ???????????????? - ????????????????????, ???????????????????????? ???? - ????????????????????, and ???????????????????????? ???? - ???????????????????? for text classification and question-answering tasks.
Název v anglickém jazyce
InA: Inhibition Adaption on pre-trained language models
Popis výsledku anglicky
Fine-tuning pre-trained language models (LMs) may not always be the most practical approach for downstream tasks. While adaptation fine-tuning methods have shown promising results, a clearer explanation of their mechanisms and further inhibition of the transmission of information is needed. To address this, we propose an Inhibition Adaptation (InA) fine-tuning method that aims to reduce the number of added tunable weights and appropriately reweight knowledge derived from pre-trained LMs. The InA method involves (1) inserting a small trainable vector into each Transformer attention architecture and (2) setting a threshold to directly eliminate irrelevant knowledge. This approach draws inspiration from the shunting inhibition, which allows the inhibition of specific neurons to gate other functional neurons. With the inhibition mechanism, InA achieves competitive or even superior performance compared to other fine-tuning methods on ???????????????? - ????????????????????, ???????????????????????? ???? - ????????????????????, and ???????????????????????? ???? - ???????????????????? for text classification and question-answering tasks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Networks
ISSN
0893-6080
e-ISSN
1879-2782
Svazek periodika
178
Číslo periodika v rámci svazku
Oct
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001251421000001
EID výsledku v databázi Scopus
2-s2.0-85195198608