Joint Exit Selection and Offloading Decision for Applications Based on Deep Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378344" target="_blank" >RIV/68407700:21230/24:00378344 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JIOT.2024.3444898" target="_blank" >https://doi.org/10.1109/JIOT.2024.3444898</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2024.3444898" target="_blank" >10.1109/JIOT.2024.3444898</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Joint Exit Selection and Offloading Decision for Applications Based on Deep Neural Networks
Popis výsledku v původním jazyce
User applications based on the deep neural networks (DNNs), such as object or anomaly detection, image recognition, or language processing, running on computation- and energy-constrained user equipment (UE) can be partially or fully processed in the edge computing servers to reduce a processing time and save an energy in the UE. To further reduce the processing time and the UE's energy consumption, DNN with multiple exit points can be incorporated. In this article, we address the problem of the decision on whether the computation should be offloaded from the UE to the edge computing server or processed locally by the UE and we solve this problem jointly and "on-the-fly" together with DNN exit selection. Since the formulated problem is very complex, we exploit the deep deterministic policy gradient for the exit selection and the offloading decisions (labeled DDPG-EOD) for the DNN-based applications. To this end, we first convert the problem into the Markov decision process, and then, we employ an end-to-end learning via DDPG with the actor-critic architecture. Second, we use a knowledge distillation-based technique to efficiently select the DNN's exit to minimize the delay and energy consumption. Simulation results show that the proposal is highly scalable, converges very quickly, and surpasses the best performing state-of-the-art approach by up to 120% and 100% in terms of the overall DNN processing delay and the energy consumption, respectively.
Název v anglickém jazyce
Joint Exit Selection and Offloading Decision for Applications Based on Deep Neural Networks
Popis výsledku anglicky
User applications based on the deep neural networks (DNNs), such as object or anomaly detection, image recognition, or language processing, running on computation- and energy-constrained user equipment (UE) can be partially or fully processed in the edge computing servers to reduce a processing time and save an energy in the UE. To further reduce the processing time and the UE's energy consumption, DNN with multiple exit points can be incorporated. In this article, we address the problem of the decision on whether the computation should be offloaded from the UE to the edge computing server or processed locally by the UE and we solve this problem jointly and "on-the-fly" together with DNN exit selection. Since the formulated problem is very complex, we exploit the deep deterministic policy gradient for the exit selection and the offloading decisions (labeled DDPG-EOD) for the DNN-based applications. To this end, we first convert the problem into the Markov decision process, and then, we employ an end-to-end learning via DDPG with the actor-critic architecture. Second, we use a knowledge distillation-based technique to efficiently select the DNN's exit to minimize the delay and energy consumption. Simulation results show that the proposal is highly scalable, converges very quickly, and surpasses the best performing state-of-the-art approach by up to 120% and 100% in terms of the overall DNN processing delay and the energy consumption, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LTT20004" target="_blank" >LTT20004: Spolupráce s mezinárodním výzkumným centrem v oblasti digitálních komunikačních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
2327-4662
Svazek periodika
11
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
38098-38112
Kód UT WoS článku
001360494400013
EID výsledku v databázi Scopus
2-s2.0-85201589229