Noisy One-point Homographies are Surprisingly Good
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380042" target="_blank" >RIV/68407700:21230/24:00380042 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52733.2024.00490" target="_blank" >https://doi.org/10.1109/CVPR52733.2024.00490</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52733.2024.00490" target="_blank" >10.1109/CVPR52733.2024.00490</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noisy One-point Homographies are Surprisingly Good
Popis výsledku v původním jazyce
Two-view homography estimation is a classic and fundamental problem in computer vision. While conceptually simple, the problem quickly becomes challenging when multiple planes are visible in the image pair. Even with correct matches, each individual plane (homography) might have a very low number of inliers when comparing to the set of all correspondences. In practice, this requires a large number of RANSAC iterations to generate a good model hypothesis. The current state-of-the-art methods therefore seek to reduce the sample size, from four point correspondences originally, by including additional information such as keypoint orientation/angles or local affine information. In this work, we continue in this direction and propose a novel one-point solver that leverages different approximate constraints derived from the same auxiliary information. In experiments we obtain state-of-the-art results, with execution time speed-ups, on large benchmark datasets and show that it is more beneficial for the solver to be sample efficient compared to generating more accurate homographies.
Název v anglickém jazyce
Noisy One-point Homographies are Surprisingly Good
Popis výsledku anglicky
Two-view homography estimation is a classic and fundamental problem in computer vision. While conceptually simple, the problem quickly becomes challenging when multiple planes are visible in the image pair. Even with correct matches, each individual plane (homography) might have a very low number of inliers when comparing to the set of all correspondences. In practice, this requires a large number of RANSAC iterations to generate a good model hypothesis. The current state-of-the-art methods therefore seek to reduce the sample size, from four point correspondences originally, by including additional information such as keypoint orientation/angles or local affine information. In this work, we continue in this direction and propose a novel one-point solver that leverages different approximate constraints derived from the same auxiliary information. In experiments we obtain state-of-the-art results, with execution time speed-ups, on large benchmark datasets and show that it is more beneficial for the solver to be sample efficient compared to generating more accurate homographies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM22-23183M" target="_blank" >GM22-23183M: Nová generace algoritmů pro řešení problémů geometrie kamer</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-5301-3
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
5125-5134
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Seattle
Datum konání akce
16. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001322555905050