Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SGNet: Salient Geometric Network for Point Cloud Registration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380045" target="_blank" >RIV/68407700:21230/24:00380045 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/IROS58592.2024.10802262" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802262</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS58592.2024.10802262" target="_blank" >10.1109/IROS58592.2024.10802262</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SGNet: Salient Geometric Network for Point Cloud Registration

  • Popis výsledku v původním jazyce

    Point Cloud Registration (PCR) is a critical and challenging task in computer vision and robotics. One of the primary diffculties in PCR is identifying salient and meaningful points that exhibit consistent semantic and geometric properties across different scans. Previous methods have encountered challenges with ambiguous matching due to the similarity among patch blocks throughout the entire point cloud and the lack of consideration for effcient global geometric consistency. To address these issues, we propose a new framework that includes several novel techniques. Firstly, we introduce a semantic-aware geometric encoder that combines object-level and patch-level semantic information. This encoder signifcantly improves registration recall by reducing ambiguity in patchlevel superpoint matching. Additionally, we incorporate a prior knowledge approach that utilizes an intrinsic shape signature to identify salient points. This enables us to extract the most salient super points and meaningful dense points in the scene. Secondly, we introduce an innovative transformer that encodes High-Order (HO) geometric features. These features are crucial for identifying salient points within initial overlap regions while considering global high-order geometric consistency. We introduce an anchor node selection strategy to optimize this highorder transformer further. By encoding inter-frame triangle or polyhedron consistency features based on these anchor nodes, we can effectively learn high-order geometric features of salient super points. These high-order features are then propagated to dense points and utilized by a Sinkhorn matching module to identify critical correspondences for successful registration. The experiments conducted on the 3DMatch/3DLoMatch and KITTI datasets demonstrate the effectiveness of our method.

  • Název v anglickém jazyce

    SGNet: Salient Geometric Network for Point Cloud Registration

  • Popis výsledku anglicky

    Point Cloud Registration (PCR) is a critical and challenging task in computer vision and robotics. One of the primary diffculties in PCR is identifying salient and meaningful points that exhibit consistent semantic and geometric properties across different scans. Previous methods have encountered challenges with ambiguous matching due to the similarity among patch blocks throughout the entire point cloud and the lack of consideration for effcient global geometric consistency. To address these issues, we propose a new framework that includes several novel techniques. Firstly, we introduce a semantic-aware geometric encoder that combines object-level and patch-level semantic information. This encoder signifcantly improves registration recall by reducing ambiguity in patchlevel superpoint matching. Additionally, we incorporate a prior knowledge approach that utilizes an intrinsic shape signature to identify salient points. This enables us to extract the most salient super points and meaningful dense points in the scene. Secondly, we introduce an innovative transformer that encodes High-Order (HO) geometric features. These features are crucial for identifying salient points within initial overlap regions while considering global high-order geometric consistency. We introduce an anchor node selection strategy to optimize this highorder transformer further. By encoding inter-frame triangle or polyhedron consistency features based on these anchor nodes, we can effectively learn high-order geometric features of salient super points. These high-order features are then propagated to dense points and utilized by a Sinkhorn matching module to identify critical correspondences for successful registration. The experiments conducted on the 3DMatch/3DLoMatch and KITTI datasets demonstrate the effectiveness of our method.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM22-23183M" target="_blank" >GM22-23183M: Nová generace algoritmů pro řešení problémů geometrie kamer</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)

  • ISBN

    979-8-3503-7771-2

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Počet stran výsledku

    7

  • Strana od-do

    3276-3282

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Abu Dhabi

  • Datum konání akce

    14. 10. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001411890000353