Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380112" target="_blank" >RIV/68407700:21230/24:00380112 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10851-024-01182-1" target="_blank" >https://doi.org/10.1007/s10851-024-01182-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10851-024-01182-1" target="_blank" >10.1007/s10851-024-01182-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix

  • Popis výsledku v původním jazyce

    Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally, we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.

  • Název v anglickém jazyce

    Sparse Resultant-Based Minimal Solvers in Computer Vision and Their Connection with the Action Matrix

  • Popis výsledku anglicky

    Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements. Minimal problems are usually formulated as complex systems of sparse polynomial equations. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants based on the Newton polytopes has not been used so often for generating efficient solvers, primarily because the polytopes do not respect the constraints amongst the coefficients. In an attempt to tackle this challenge, here we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via Schur complement computation. We show that for some camera geometry problems our resultant-based method leads to smaller and more stable solvers than the state-of-the-art Gröbner basis-based solvers, while being significantly smaller than the state-of-the-art resultant-based methods. The proposed method can be fully automated and incorporated into existing tools for the automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Gröbner basis-based methods for minimal problems in computer vision. Additionally, we study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically, we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Imaging and Vision

  • ISSN

    0924-9907

  • e-ISSN

    1573-7683

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    335-360

  • Kód UT WoS článku

    001190195900001

  • EID výsledku v databázi Scopus

    2-s2.0-85188428706