Robust Self-calibration of Focal Lengths from the Fundamental Matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380113" target="_blank" >RIV/68407700:21230/24:00380113 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52733.2024.00499" target="_blank" >https://doi.org/10.1109/CVPR52733.2024.00499</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52733.2024.00499" target="_blank" >10.1109/CVPR52733.2024.00499</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Self-calibration of Focal Lengths from the Fundamental Matrix
Popis výsledku v původním jazyce
The problem of self-calibration of two cameras from a given fundamental matrix is one of the basic problems in geometric computer vision. Under the assumption of known principal points and square pixels, the Bougnoux formula offers a means to compute the two unknown focal lengths. However, in many practical situations, the formula yields inaccurate results due to commonly occurring singularities. Moreover, the estimates are sensitive to noise in the com-puted fundamental matrix and to the assumed positions of the principal points. In this paper, we therefore propose an efficient and robust iterative method to estimate the focal lengths along with the principal points of the cameras given a fundamental matrix and priors for the estimated camera intrinsics. In addition, we study a computationally efficient check of models generated within RANSAC that improves the accuracy of the estimated models while reducing the to-tal computational time. Extensive experiments on real and synthetic data show that our iterative method brings signifi-cant improvements in terms of the accuracy of the estimated focal lengths over the Bougnoux formula and other state-of-the-art methods, even when relying on inaccurate priors. The code for the methods and experiments is available at https://github.com/kocurvik/robust.self.calibration
Název v anglickém jazyce
Robust Self-calibration of Focal Lengths from the Fundamental Matrix
Popis výsledku anglicky
The problem of self-calibration of two cameras from a given fundamental matrix is one of the basic problems in geometric computer vision. Under the assumption of known principal points and square pixels, the Bougnoux formula offers a means to compute the two unknown focal lengths. However, in many practical situations, the formula yields inaccurate results due to commonly occurring singularities. Moreover, the estimates are sensitive to noise in the com-puted fundamental matrix and to the assumed positions of the principal points. In this paper, we therefore propose an efficient and robust iterative method to estimate the focal lengths along with the principal points of the cameras given a fundamental matrix and priors for the estimated camera intrinsics. In addition, we study a computationally efficient check of models generated within RANSAC that improves the accuracy of the estimated models while reducing the to-tal computational time. Extensive experiments on real and synthetic data show that our iterative method brings signifi-cant improvements in terms of the accuracy of the estimated focal lengths over the Bougnoux formula and other state-of-the-art methods, even when relying on inaccurate priors. The code for the methods and experiments is available at https://github.com/kocurvik/robust.self.calibration
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM22-23183M" target="_blank" >GM22-23183M: Nová generace algoritmů pro řešení problémů geometrie kamer</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-5300-6
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
5220-5229
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Seattle
Datum konání akce
16. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001322555905059