Hilbert C*-module independence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00381379" target="_blank" >RIV/68407700:21230/24:00381379 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/mana.202200472" target="_blank" >https://doi.org/10.1002/mana.202200472</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202200472" target="_blank" >10.1002/mana.202200472</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hilbert C*-module independence
Popis výsledku v původním jazyce
We introduce the notion of Hilbert C*-module independence: Let A be a unital C*-algebra and let E-i subset of E, i = 1, 2, be ternary subspaces of a Hilbert A-module E. Then, E-1 and E-2 are said to be Hilbert C*-module independent if there are positive constants m and M such that for every state phi(i) on < E-i, E-i >, = 1, 2, there exists a state phi on A such that m phi(i)(vertical bar x vertical bar) <= phi(vertical bar x vertical bar) <= M phi(i)(vertical bar x vertical bar(2))(1/2), for all x is an element of E-i,E- i = 1, 2. We show that it is a natural generalization of the notion of C*-independence of C*-algebras. Moreover, we demonstrate that even in the case of C*-algebras, this concept of independence is new and has a nice characterization in terms of Hahn-Banach-type extensions. We show that if < E-1, E-1 > has the quasi extension property and z is an element of E-1 boolean AND E-2 with vertical bar vertical bar z vertical bar vertical bar = 1, then vertical bar vertical bar z vertical bar vertical bar = 1. Several characterizations of Hilbert C*-module independence and a new characterization of C*-independence are given. One of characterizations states that if z(0) is an element of E-1 boolean AND E-2 is such that < z(0), z(0)> = 1, then E-1 and E-2 are Hilbert C*-module independent if and only if vertical bar vertical bar < x, z(0)> < y, z(0)> vertical bar vertical bar = vertical bar vertical bar < x, z(0)> vertical bar vertical bar vertical bar vertical bar < y, z(0)> vertical bar vertical bar for all x is an element of E-1 and y is an element of E-2. We also provide some technical examples and counterexamples to illustrate our results.
Název v anglickém jazyce
Hilbert C*-module independence
Popis výsledku anglicky
We introduce the notion of Hilbert C*-module independence: Let A be a unital C*-algebra and let E-i subset of E, i = 1, 2, be ternary subspaces of a Hilbert A-module E. Then, E-1 and E-2 are said to be Hilbert C*-module independent if there are positive constants m and M such that for every state phi(i) on < E-i, E-i >, = 1, 2, there exists a state phi on A such that m phi(i)(vertical bar x vertical bar) <= phi(vertical bar x vertical bar) <= M phi(i)(vertical bar x vertical bar(2))(1/2), for all x is an element of E-i,E- i = 1, 2. We show that it is a natural generalization of the notion of C*-independence of C*-algebras. Moreover, we demonstrate that even in the case of C*-algebras, this concept of independence is new and has a nice characterization in terms of Hahn-Banach-type extensions. We show that if < E-1, E-1 > has the quasi extension property and z is an element of E-1 boolean AND E-2 with vertical bar vertical bar z vertical bar vertical bar = 1, then vertical bar vertical bar z vertical bar vertical bar = 1. Several characterizations of Hilbert C*-module independence and a new characterization of C*-independence are given. One of characterizations states that if z(0) is an element of E-1 boolean AND E-2 is such that < z(0), z(0)> = 1, then E-1 and E-2 are Hilbert C*-module independent if and only if vertical bar vertical bar < x, z(0)> < y, z(0)> vertical bar vertical bar = vertical bar vertical bar < x, z(0)> vertical bar vertical bar vertical bar vertical bar < y, z(0)> vertical bar vertical bar for all x is an element of E-1 and y is an element of E-2. We also provide some technical examples and counterexamples to illustrate our results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Svazek periodika
297
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
494-511
Kód UT WoS článku
001030304000001
EID výsledku v databázi Scopus
2-s2.0-85164594187