Coordinated Machine Learning for Handover in Mobile Networks with Transparent Relaying UAVs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00382099" target="_blank" >RIV/68407700:21230/24:00382099 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCWORKSHOPS59551.2024.10615707" target="_blank" >https://doi.org/10.1109/ICCWORKSHOPS59551.2024.10615707</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCWORKSHOPS59551.2024.10615707" target="_blank" >10.1109/ICCWORKSHOPS59551.2024.10615707</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coordinated Machine Learning for Handover in Mobile Networks with Transparent Relaying UAVs
Popis výsledku v původním jazyce
The Unmanned Aerial Vehicles (UAVs) acting as relays in the mobile networks are usually energy constrained. To improve the energy efficiency of such networks, UAVs should operate in a transparent relaying mode. In such mode, however, the channel quality between users and UAVs cannot be measured, since the transparent relays do not transmit own signaling. A lack of information on the quality of channel between users and UAVs limits practical implementation and is serious restraint for mobility management. To overcome this limitation, we develop a novel concept of coordinated machine learning for handover of users and UAVs in the mobile networks with transparent relaying UAVs. First, we predict the channel quality from other known information in the network via deep neural network (DNN). Such predicted channel quality is then fed into deep reinforcement learning (DRL) for an adjustment of handover parameter - cell individual offset (CIO). Unfortunately, a simple concatenation of the DNN and the DRL leads to a notable performance degradation. Hence, we propose a coordination of the DNN for channel quality prediction and the DRL for CIO setting. The coordination consists in a mutual exchange of performance-related information and an update of DNN according to a reward of DRL. The proposal increases the sum capacity by up to 12.7% while reducing the number of user and UAV handovers by up to 12.9% and 16.4%, respectively, compared to related works.
Název v anglickém jazyce
Coordinated Machine Learning for Handover in Mobile Networks with Transparent Relaying UAVs
Popis výsledku anglicky
The Unmanned Aerial Vehicles (UAVs) acting as relays in the mobile networks are usually energy constrained. To improve the energy efficiency of such networks, UAVs should operate in a transparent relaying mode. In such mode, however, the channel quality between users and UAVs cannot be measured, since the transparent relays do not transmit own signaling. A lack of information on the quality of channel between users and UAVs limits practical implementation and is serious restraint for mobility management. To overcome this limitation, we develop a novel concept of coordinated machine learning for handover of users and UAVs in the mobile networks with transparent relaying UAVs. First, we predict the channel quality from other known information in the network via deep neural network (DNN). Such predicted channel quality is then fed into deep reinforcement learning (DRL) for an adjustment of handover parameter - cell individual offset (CIO). Unfortunately, a simple concatenation of the DNN and the DRL leads to a notable performance degradation. Hence, we propose a coordination of the DNN for channel quality prediction and the DRL for CIO setting. The coordination consists in a mutual exchange of performance-related information and an update of DNN according to a reward of DRL. The proposal increases the sum capacity by up to 12.7% while reducing the number of user and UAV handovers by up to 12.9% and 16.4%, respectively, compared to related works.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05646S" target="_blank" >GA23-05646S: Inteligentní přidělovaní rádiových prostředků a řízení mobility založené na federovaném učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE International Conference on Communications Workshops
ISBN
979-8-3503-0406-0
ISSN
2164-7038
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1761-1766
Název nakladatele
Institute of Electrical and Electronic Engineers
Místo vydání
Piscataway
Místo konání akce
Denver
Datum konání akce
9. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001296276700292