How Much Randomness Makes a Tool Randomized?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F11%3A00180827" target="_blank" >RIV/68407700:21240/11:00180827 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How Much Randomness Makes a Tool Randomized?
Popis výsledku v původním jazyce
Most of presently used academic logic synthesis tools, including SIS and ABC, are fully deterministic. Up to the knowledge of the authors, this holds for all available commercial tools as well. This means that no random decisions are made; the algorithmsfully rely on deterministic heuristics. In this paper we present several hints of insufficiency of such an approach and show examples of perspective randomized logic synthesis algorithms. Judging from our experiments, these algorithms have a higher potential of performing better than the deterministic ones. Further we study how much randomness is actually needed for the algorithms to perform well. We show that some algorithms require only a small amount of randomness, while still taking full advantageof their randomized nature. On the other hand, some algorithms require a very high level of randomness to perform well. We propose reasons for this behavior and show a way of computing the necessary measure of randomness required.
Název v anglickém jazyce
How Much Randomness Makes a Tool Randomized?
Popis výsledku anglicky
Most of presently used academic logic synthesis tools, including SIS and ABC, are fully deterministic. Up to the knowledge of the authors, this holds for all available commercial tools as well. This means that no random decisions are made; the algorithmsfully rely on deterministic heuristics. In this paper we present several hints of insufficiency of such an approach and show examples of perspective randomized logic synthesis algorithms. Judging from our experiments, these algorithms have a higher potential of performing better than the deterministic ones. Further we study how much randomness is actually needed for the algorithms to perform well. We show that some algorithms require only a small amount of randomness, while still taking full advantageof their randomized nature. On the other hand, some algorithms require a very high level of randomness to perform well. We propose reasons for this behavior and show a way of computing the necessary measure of randomness required.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1668" target="_blank" >GA102/09/1668: Zvyšování spolehlivosti a provozuschopnosti v obvodech SoC</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů