Robust Hierarchical Linear Model Comparison for End-of-Utterance Detection under Noisy Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F12%3A00197446" target="_blank" >RIV/68407700:21240/12:00197446 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6189641" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6189641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISBAST.2012.26" target="_blank" >10.1109/ISBAST.2012.26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Hierarchical Linear Model Comparison for End-of-Utterance Detection under Noisy Environments
Popis výsledku v původním jazyce
A simple and efficient algorithm for robust end-of-utterance detection of speech signal in noisy environments is proposed in the paper. To detect speech-block end-points, we use entropy sequence of the input speech signal, and hierarchically compare thefit of two weighted linear models. The first model, M1, is very simple; it corresponds to a constant average entropy level for the speech signal in the entire window. The second model, M2, corresponds to a step-like entropy change from one constant levelto another, with a gradual transition between the levels. Model M2 is in fact a piecewise linear regression model with two horizontal lines connected by a third transitional line. We treat M1 as a linear model only to be able to describe it as a submodel of M2 and use methodology based on statistical submodel testing. The regression models are constructed so that their fit will differ the most near the speech-block end-points. The models are fitted in a interval of the entropy sequence,
Název v anglickém jazyce
Robust Hierarchical Linear Model Comparison for End-of-Utterance Detection under Noisy Environments
Popis výsledku anglicky
A simple and efficient algorithm for robust end-of-utterance detection of speech signal in noisy environments is proposed in the paper. To detect speech-block end-points, we use entropy sequence of the input speech signal, and hierarchically compare thefit of two weighted linear models. The first model, M1, is very simple; it corresponds to a constant average entropy level for the speech signal in the entire window. The second model, M2, corresponds to a step-like entropy change from one constant levelto another, with a gradual transition between the levels. Model M2 is in fact a piecewise linear regression model with two horizontal lines connected by a third transitional line. We treat M1 as a linear model only to be able to describe it as a submodel of M2 and use methodology based on statistical submodel testing. The regression models are constructed so that their fit will differ the most near the speech-block end-points. The models are fitted in a interval of the entropy sequence,
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2012 International Symposium on Biometrics and Security Technologies (ISBAST 2012)
ISBN
978-0-7695-4696-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
126-133
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Taipei
Datum konání akce
26. 3. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—